Page 74 - C:\Users\trainee\AppData\Local\Temp\msoEAA3.tmp
P. 74

Document Title
                Fundamentals of Stress and Vibration                                  Chapter Title
                [A Practical guide for aspiring Designers / Analysts]              2. Engineering Mechanics


                 šƒ’Ž‡ ʹǣ ϐ‹† –Ї –‹‡ ”ƒ–‹‘ ˆ‘” ƒ Š‘‘’ǡ •Ž‹†‹‰ †‘™ ƒ ‹…Ž‹‡† ’Žƒ‡ ƒ† ”‘ŽŽ‹‰ †‘™ ƒ
                ‹…Ž‹‡† ’Žƒ‡ǡ ƒ• •Š‘™ ‹ ȏ ‹‰ ʹǤ͸ͶȐǤ

















                                            [Fig 2.64 : Hoop rolling down an inclined plane]

                Solution: for the hoop rolling down the inclined plane, the acceleration is given by:



                       g sin θ        g sinθ     g sin θ

                  a =       I    =       mr 2       2
                      1 +    2       1 +   2
                          mr             mr
                considering the conservation of energy, as there is no loss of energy.

                 Potential Energy = Transational Kinetic Energy + Rotational Kinetic Energy


                         1       1         1        1         v 2
                              2
                                                          2
                                                                         2
                                      2
                                                2
                 mgH =    mv +  Iω   =    mv + ∗ mr ∗              =  mv
                         2       2         2        2         r 2
                Further simplifying the above expression, we get:
                 v = gH  =  v =  gH
                  2
                To compute the time of travel, let us use the expression [v = U+at], where, the initial velocity ‘U’ is
                zero.

                Substituting the value of ‘v’ and ‘a’ in the expression [v = U+at], we get:



                             g sin θ                    2                      4
                  gH = 0 +          ∗ t  =  t =  gH ∗         =  t =  gH ∗
                                                                             2
                                                                                  2
                               2                     g sin θ                 g sin θ
                                                                  H
                Therefore, we have the time of travel to be:  t = 2        - - - - (2.52)
                                                                    2
                                                                g sin θ



                   Page 74      QP No. SSC/Q4401, Version 1.0, NSQF Level 7, Compliant with Aero and Auto Industries,
   69   70   71   72   73   74   75   76   77   78   79