Page 116 - Cardiac Nursing
P. 116

8:4
                                           1 A
                                             M
                                9/0
                                  9/2
                                    009
                                               P
                                                         ra
                                                       pta
                    p06
                                                 g
                                                  e 9
                                                    2 A
                               0
            K34
               0-c
                 03_
         LWBK340-c03_p069-096.qxd  09/09/2009  08:41 AM  Page 92 Aptara
         L L LWB
         LWB K34 0-c 03_ p06 9-0 96. qxd  0 9/0 9/2 009  0 0 8:4 1 A M  P a a g e 9 2 A pta ra
                       9-0
                         96.
                           qxd
                  92    PA R T  I / Anatomy and Physiology
                  106. Bourque, C. W. (2008). Central mechanisms of osmosensation and sys-  132. Bader, M., & Ganten, D. (2008). Update on tissue renin-angiotensin
                                                                                                   6
                      temic osmoregulation. Nature Reviews, 9, 519–531.  systems. Journal of Molecular Medicine, 86, 615–621.
                                                                                                   6
                  107. Shen, Y. T., Cowley, A. W., Jr., & Vatner, S. F. (1991). Relative roles of  133. Dzau, V. J., Bernstein, K., Celermajer, D., et al. (2002). Pathophysio-
                      cardiac and arterial baroreceptors in vasopressin regulation during hem-  logic and therapeutic importance of tissue ACE: A consensus report.
                                                                                                6
                                                                                                6
                      orrhage in conscious dogs. Circulation Research, 68, 1422–1436.  Cardiovascular Drugs Therapeutics, 16, 149–160.
                  108. Thrasher, T. N., Chen, H. G., & Keil, L. C. (2000). Arterial barorecep-  134. Griendling, K. K., & Ushio-Fukai, M. (2000). Reactive oxygen species
                      tors control plasma vasopressin responses to graded hypotension in con-  as mediators of angiotensin II signaling. Regulatory Peptides, 91, 21–27.
                      scious dogs. American Journal of Physiology, 278, R469–R475.  135. Harrison, D., Griendling, K. K., Landmesser, U., et al. (2003). Role of
                  109. Thrasher, T. N., Keil, L. C. (2000). Systolic pressure predicts plasma va-  oxidative stress in atherosclerosis. American Journal of Cardiology, 91,
                      sopressin responses to hemorrhage and vena caval constriction in dogs.  7A–11A.
                      American Journal of Physiology, 279, R1035–R1042.  136. Touyz, R. M. (2005). Reactive oxygen species as mediators of calcium
                  110. Levin, E. R., Gardner, D. G., & Samson, W. K. (1998). Natriuretic pep-  signaling by angiotensin II: Implications in vascular physiology and
                      tides. New England Journal of Medicine, 339, 321–328.  pathophysiology. Antioxidants and Redox Signaling, 7, 1302–1314.
                                                                                                         7
                                                                                                         7
                  111. Rubattu, S., Sciarretta, S., Valenti, V., et al. (2008). Natriuretic peptides:  137. Donoghue, M., Hsieh, F., Baronas, E., et al. (2000). A novel an-
                      An update on bioactivity, potential therapeutic use, and implication in  giotensin-converting enzyme-related carboxypeptidase (ACE2) converts
                      cardiovascular diseases. American Journal of Hypertension, 21, 733–741.  angiotensin I to angiotensin 1-9. Circulation Research, 87, E1–E9.
                  112. de Bold, A. J., Borenstein, H. B., Veress, A. T., et al. (1981). A rapid and  138. Tipnis, S. R., Hooper, N. M., Hyde, R., et al. (2000). A human ho-
                      potent natriuretic response to intravenous injection of atrial myocardial  molog of angiotensin-converting enzyme. Cloning and functional ex-
                      extract in rats. Life Sciences, 28, 89–94.         pression as a captopril-insensitive carboxypeptidase. Journal of Biological
                  113. Clerico, A., Recchia, F. A., Passino, C., et al. (2006). Cardiac endocrine  Chemistry, 275, 33238–33243.
                      function is an essential component of the homeostatic regulation net-  139. Raizada, M. K., & Ferreira, A. J. (2007). ACE2: A new target for car-
                      work: Physiological and clinical implications. American Journal of Physi-  diovascular disease therapeutics. Journal of Cardiovascular Pharmacology,
                      ology Heart and Circulatory Physiology, 290, H17–H29.  50, 112–119.
                  114. Ruskoaho, H. (1992). Atrial natriuretic peptide: Synthesis, release, and  140. Madeddu, P., Emanueli, C., & El-Dahr, S. (2007). Mechanisms of dis-
                      metabolism. Pharmacology in Review, 44, 479–602.   ease: the tissue kallikrein-kinin system in hypertension and vascular re-
                                              4
                                              4
                  115. Dhingra, H., Roongsritong, C., & Kurtzman, N. A. (2002). Brain na-  modeling. Nature Clinical Practice Nephrology, 3, 208–221.
                      triuretic peptide: Role in cardiovascular and volume homeostasis. Semi-  141. Sharma, J. N. (2003). Does the kinin system mediate in cardiovascular
                      nars in Nephrology, 22, 423–437.                   abnormalities? An overview. Journal of Clinical Pharmacology, 43,
                  116. Sabrane, K., Kruse, M. N., Fabritz, L., et al. (2005). Vascular endothelium  1187–1195.
                      is critically involved in the hypotensive and hypovolemic actions of atrial  142. Granger, J. P., & Hall, J. E. (1985). Acute and chronic actions of
                      natriuretic peptide. Journal of Clinical Investigations, 115, 1666–1674.  bradykinin on renal function and arterial pressure. American Journal of
                  117. Rose, R. A., & Giles, W. R. (2008). Natriuretic peptide C receptor sig-  Physiology, 248, F87–F92.
                                                           6
                                                           6
                      nalling in the heart and vasculature. Journal of Physiology, 586, 353–366.  143. Sharma, J. N. (2005). The kallikrein-kinin system: from mediator of in-
                  118. Rubattu, S., & Volpe, M. (2001). The atrial natriuretic peptide: A  flammation to modulator of cardioprotection. Inflammopharmacology,
                      changing view. Journal of Hypertension, 19, 1923–1931.  12, 591–596.
                  119. Nishikimi, T., Maeda, N., & Matsuoka, H. (2006). The role of natri-  144. Westermann, D., Schultheiss, H. P., & Tschope, C. (2008). New per-
                      uretic peptides in cardioprotection. Cardiovascular Research, 69, 318–328.  spective on the tissue kallikrein-kinin system in myocardial infarction:
                  120. Intravenous nesiritide vs nitroglycerin for treatment of decompensated  Role of angiogenesis and cardiac regeneration. International Im-
                      congestive heart failure: A randomized controlled trial. (2002). JAMA,  munopharmacology, 8, 148–154.
                       7
                       7
                      287, 1531–1540.                                 145. Sharma, J. N. (2008). Cardiovascular activities of the bradykinin system.
                  121. Colucci, W. S., Elkayam, U., Horton, D. P., et al. (2000). Intravenous  Scientific World Journal, 8, 384–393.
                      nesiritide, a natriuretic peptide, in the treatment of decompensated con-  146. Daull, P., Jeng, A. Y., & Battistini, B. (2007). Towards triple vasopepti-
                      gestive heart failure. Nesiritide Study Group. New England Journal of  dase inhibitors for the treatment of cardiovascular diseases. Journal of
                      Medicine, 343, 246–253.                            Cardiovascular Pharmacology, 50, 247–256.
                  122. Keating, G. M., & Goa, K. L. (2003). Nesiritide: A review of its use in  147. Tschope, C., Schultheiss, H. P., & Walther, T. (2002). Multiple interac-
                      acute decompensated heart failure. Drugs, 63, 47–70.  tions between the renin-angiotensin and the kallikrein-kinin systems:
                  123. Arora, R. R., Venkatesh, P. K., & Molnar, J. (2006). Short and long-term  Role of ACE inhibition and AT1 receptor blockade. Journal of Cardio-
                      mortality with nesiritide. American Heart Journal, 152, 1084–1090.  vascular Pharmacology, 39, 478–487.
                  124. Sackner-Bernstein, J. D., Kowalski, M., Fox, M., et al. (2005). Short-  148. Schmaier, A. H. (2003). The kallikrein-kinin and the renin-angiotensin
                      term risk of death after treatment with nesiritide for decompensated  systems have a multilayered interaction. American Journal of Physiology,
                      heart failure: A pooled analysis of randomized controlled trials. JAMA,  285, R1–R13.
                      293, 1900–1905.                                 149. Shen, B., & El-Dahr, S. S. (2006). Cross-talk of the renin-angiotensin
                  125. Sackner-Bernstein, J. D., Skopicki, H. A., & Aaronson, K. D. (2005).  and kallikrein-kinin systems. Biological Chemistry, 387, 145–150.
                                                                                                          7
                                                                                                          7
                      Risk of worsening renal function with nesiritide in patients with acutely  150. Packer, M., Califf, R. M., Konstam, M. A., et al. (2002). Comparison of
                      decompensated heart failure. Circulation, 111, 1487–1491.  omapatrilat and enalapril in patients with chronic heart failure: The
                  126. Arora, R. R. (2006). Nesiritide: trials and tribulations. Journal of Car-  Omapatrilat Versus Enalapril Randomized Trial of Utility in Reducing
                      diovascular Pharmacology and Therapeutics, 11, 165–169.  Events (OVERTURE). Circulation, 106, 920–926.
                                                                                                 6
                                                                                                 6
                  127. Hobbs, A., Foster, P., Prescott, C., et al. (2004). Natriuretic peptide re-  151. Messerli, F. H., & Nussberger, J. (2000). Vasopeptidase inhibition and
                                                                                         6
                      ceptor-C regulates coronary blood flow and prevents myocardial is-  angio-oedema. Lancet, 356, 608–609.
                                                                                         6
                      chemia/reperfusion injury: novel cardioprotective role for endothelium-  152. Esler, M. (1993). Clinical application of noradrenaline spillover
                      derived C-type natriuretic peptide. Circulation, 110, 1231–1235.  methodology: Delineation of regional human sympathetic nervous re-
                  128. Sandow, S. L., & Tare, M. (2007). C-type natriuretic peptide: A new en-  sponses. Pharmacology Toxicology, 73, 243–253.
                      dothelium-derived hyperpolarizing factor? Trends in Pharmacological  153. Bevan, J. A. (1977). Some functional consequences of variation in adren-
                      Sciences, 28, 61–67.                               ergic synaptic cleft width and in nerve density and distribution. Federa-
                  129. Villar, I. C., Panayiotou, C. M., Sheraz, A., et al. (2007). Definitive role  tion Proceedings, 36, 2439–2443.
                                                                                     6
                                                                                     6
                      for natriuretic peptide receptor-C in mediating the vasorelaxant activity  154. Bevan, J. A. (1979). Some bases of differences in vascular response to
                      of C-type natriuretic peptide and endothelium-derived hyperpolarising  sympathetic activity. Circulation Research, 45, 161–171.
                                          4
                                          4
                      factor. Cardiovascular Research, 74, 515–525.   155. Bevan, J. A., & Su, C. (1974). Variation of intra- and perisynaptic
                  130. Stingo, A. J., Clavell, A. L., Aarhus, L. L., et al. (1992). Cardiovascular  adrenergic transmitter concentrations with width of synaptic cleft in vas-
                      and renal actions of C-type natriuretic peptide. American Journal of Phys-  cular tissue. Journal of Pharmacology and Experimental Therapeutics, 190,
                      iology, 262, H308–H312.                            30–38.
                  131. Scotland, R. S., Ahluwalia, A., & Hobbs, A. J. (2005). C-type natriuretic  156. Gallagher, D., & O’Rourke, M. (1993). What is the arterial pressure? In
                      peptide in vascular physiology and disease. Pharmacology & Therapeutics,  M. O’Rourke, M. Safar, V. Dzau (Eds.), Arterial vasodilation. Mecha-
                      105, 85–93.                                        nisms and therapy (pp. 134–148). Philadelphia: Lea & Febiger.
   111   112   113   114   115   116   117   118   119   120   121