Page 116 - Cardiac Nursing
P. 116
8:4
1 A
M
9/0
9/2
009
P
ra
pta
p06
g
e 9
2 A
0
K34
0-c
03_
LWBK340-c03_p069-096.qxd 09/09/2009 08:41 AM Page 92 Aptara
L L LWB
LWB K34 0-c 03_ p06 9-0 96. qxd 0 9/0 9/2 009 0 0 8:4 1 A M P a a g e 9 2 A pta ra
9-0
96.
qxd
92 PA R T I / Anatomy and Physiology
106. Bourque, C. W. (2008). Central mechanisms of osmosensation and sys- 132. Bader, M., & Ganten, D. (2008). Update on tissue renin-angiotensin
6
temic osmoregulation. Nature Reviews, 9, 519–531. systems. Journal of Molecular Medicine, 86, 615–621.
6
107. Shen, Y. T., Cowley, A. W., Jr., & Vatner, S. F. (1991). Relative roles of 133. Dzau, V. J., Bernstein, K., Celermajer, D., et al. (2002). Pathophysio-
cardiac and arterial baroreceptors in vasopressin regulation during hem- logic and therapeutic importance of tissue ACE: A consensus report.
6
6
orrhage in conscious dogs. Circulation Research, 68, 1422–1436. Cardiovascular Drugs Therapeutics, 16, 149–160.
108. Thrasher, T. N., Chen, H. G., & Keil, L. C. (2000). Arterial barorecep- 134. Griendling, K. K., & Ushio-Fukai, M. (2000). Reactive oxygen species
tors control plasma vasopressin responses to graded hypotension in con- as mediators of angiotensin II signaling. Regulatory Peptides, 91, 21–27.
scious dogs. American Journal of Physiology, 278, R469–R475. 135. Harrison, D., Griendling, K. K., Landmesser, U., et al. (2003). Role of
109. Thrasher, T. N., Keil, L. C. (2000). Systolic pressure predicts plasma va- oxidative stress in atherosclerosis. American Journal of Cardiology, 91,
sopressin responses to hemorrhage and vena caval constriction in dogs. 7A–11A.
American Journal of Physiology, 279, R1035–R1042. 136. Touyz, R. M. (2005). Reactive oxygen species as mediators of calcium
110. Levin, E. R., Gardner, D. G., & Samson, W. K. (1998). Natriuretic pep- signaling by angiotensin II: Implications in vascular physiology and
tides. New England Journal of Medicine, 339, 321–328. pathophysiology. Antioxidants and Redox Signaling, 7, 1302–1314.
7
7
111. Rubattu, S., Sciarretta, S., Valenti, V., et al. (2008). Natriuretic peptides: 137. Donoghue, M., Hsieh, F., Baronas, E., et al. (2000). A novel an-
An update on bioactivity, potential therapeutic use, and implication in giotensin-converting enzyme-related carboxypeptidase (ACE2) converts
cardiovascular diseases. American Journal of Hypertension, 21, 733–741. angiotensin I to angiotensin 1-9. Circulation Research, 87, E1–E9.
112. de Bold, A. J., Borenstein, H. B., Veress, A. T., et al. (1981). A rapid and 138. Tipnis, S. R., Hooper, N. M., Hyde, R., et al. (2000). A human ho-
potent natriuretic response to intravenous injection of atrial myocardial molog of angiotensin-converting enzyme. Cloning and functional ex-
extract in rats. Life Sciences, 28, 89–94. pression as a captopril-insensitive carboxypeptidase. Journal of Biological
113. Clerico, A., Recchia, F. A., Passino, C., et al. (2006). Cardiac endocrine Chemistry, 275, 33238–33243.
function is an essential component of the homeostatic regulation net- 139. Raizada, M. K., & Ferreira, A. J. (2007). ACE2: A new target for car-
work: Physiological and clinical implications. American Journal of Physi- diovascular disease therapeutics. Journal of Cardiovascular Pharmacology,
ology Heart and Circulatory Physiology, 290, H17–H29. 50, 112–119.
114. Ruskoaho, H. (1992). Atrial natriuretic peptide: Synthesis, release, and 140. Madeddu, P., Emanueli, C., & El-Dahr, S. (2007). Mechanisms of dis-
metabolism. Pharmacology in Review, 44, 479–602. ease: the tissue kallikrein-kinin system in hypertension and vascular re-
4
4
115. Dhingra, H., Roongsritong, C., & Kurtzman, N. A. (2002). Brain na- modeling. Nature Clinical Practice Nephrology, 3, 208–221.
triuretic peptide: Role in cardiovascular and volume homeostasis. Semi- 141. Sharma, J. N. (2003). Does the kinin system mediate in cardiovascular
nars in Nephrology, 22, 423–437. abnormalities? An overview. Journal of Clinical Pharmacology, 43,
116. Sabrane, K., Kruse, M. N., Fabritz, L., et al. (2005). Vascular endothelium 1187–1195.
is critically involved in the hypotensive and hypovolemic actions of atrial 142. Granger, J. P., & Hall, J. E. (1985). Acute and chronic actions of
natriuretic peptide. Journal of Clinical Investigations, 115, 1666–1674. bradykinin on renal function and arterial pressure. American Journal of
117. Rose, R. A., & Giles, W. R. (2008). Natriuretic peptide C receptor sig- Physiology, 248, F87–F92.
6
6
nalling in the heart and vasculature. Journal of Physiology, 586, 353–366. 143. Sharma, J. N. (2005). The kallikrein-kinin system: from mediator of in-
118. Rubattu, S., & Volpe, M. (2001). The atrial natriuretic peptide: A flammation to modulator of cardioprotection. Inflammopharmacology,
changing view. Journal of Hypertension, 19, 1923–1931. 12, 591–596.
119. Nishikimi, T., Maeda, N., & Matsuoka, H. (2006). The role of natri- 144. Westermann, D., Schultheiss, H. P., & Tschope, C. (2008). New per-
uretic peptides in cardioprotection. Cardiovascular Research, 69, 318–328. spective on the tissue kallikrein-kinin system in myocardial infarction:
120. Intravenous nesiritide vs nitroglycerin for treatment of decompensated Role of angiogenesis and cardiac regeneration. International Im-
congestive heart failure: A randomized controlled trial. (2002). JAMA, munopharmacology, 8, 148–154.
7
7
287, 1531–1540. 145. Sharma, J. N. (2008). Cardiovascular activities of the bradykinin system.
121. Colucci, W. S., Elkayam, U., Horton, D. P., et al. (2000). Intravenous Scientific World Journal, 8, 384–393.
nesiritide, a natriuretic peptide, in the treatment of decompensated con- 146. Daull, P., Jeng, A. Y., & Battistini, B. (2007). Towards triple vasopepti-
gestive heart failure. Nesiritide Study Group. New England Journal of dase inhibitors for the treatment of cardiovascular diseases. Journal of
Medicine, 343, 246–253. Cardiovascular Pharmacology, 50, 247–256.
122. Keating, G. M., & Goa, K. L. (2003). Nesiritide: A review of its use in 147. Tschope, C., Schultheiss, H. P., & Walther, T. (2002). Multiple interac-
acute decompensated heart failure. Drugs, 63, 47–70. tions between the renin-angiotensin and the kallikrein-kinin systems:
123. Arora, R. R., Venkatesh, P. K., & Molnar, J. (2006). Short and long-term Role of ACE inhibition and AT1 receptor blockade. Journal of Cardio-
mortality with nesiritide. American Heart Journal, 152, 1084–1090. vascular Pharmacology, 39, 478–487.
124. Sackner-Bernstein, J. D., Kowalski, M., Fox, M., et al. (2005). Short- 148. Schmaier, A. H. (2003). The kallikrein-kinin and the renin-angiotensin
term risk of death after treatment with nesiritide for decompensated systems have a multilayered interaction. American Journal of Physiology,
heart failure: A pooled analysis of randomized controlled trials. JAMA, 285, R1–R13.
293, 1900–1905. 149. Shen, B., & El-Dahr, S. S. (2006). Cross-talk of the renin-angiotensin
125. Sackner-Bernstein, J. D., Skopicki, H. A., & Aaronson, K. D. (2005). and kallikrein-kinin systems. Biological Chemistry, 387, 145–150.
7
7
Risk of worsening renal function with nesiritide in patients with acutely 150. Packer, M., Califf, R. M., Konstam, M. A., et al. (2002). Comparison of
decompensated heart failure. Circulation, 111, 1487–1491. omapatrilat and enalapril in patients with chronic heart failure: The
126. Arora, R. R. (2006). Nesiritide: trials and tribulations. Journal of Car- Omapatrilat Versus Enalapril Randomized Trial of Utility in Reducing
diovascular Pharmacology and Therapeutics, 11, 165–169. Events (OVERTURE). Circulation, 106, 920–926.
6
6
127. Hobbs, A., Foster, P., Prescott, C., et al. (2004). Natriuretic peptide re- 151. Messerli, F. H., & Nussberger, J. (2000). Vasopeptidase inhibition and
6
ceptor-C regulates coronary blood flow and prevents myocardial is- angio-oedema. Lancet, 356, 608–609.
6
chemia/reperfusion injury: novel cardioprotective role for endothelium- 152. Esler, M. (1993). Clinical application of noradrenaline spillover
derived C-type natriuretic peptide. Circulation, 110, 1231–1235. methodology: Delineation of regional human sympathetic nervous re-
128. Sandow, S. L., & Tare, M. (2007). C-type natriuretic peptide: A new en- sponses. Pharmacology Toxicology, 73, 243–253.
dothelium-derived hyperpolarizing factor? Trends in Pharmacological 153. Bevan, J. A. (1977). Some functional consequences of variation in adren-
Sciences, 28, 61–67. ergic synaptic cleft width and in nerve density and distribution. Federa-
129. Villar, I. C., Panayiotou, C. M., Sheraz, A., et al. (2007). Definitive role tion Proceedings, 36, 2439–2443.
6
6
for natriuretic peptide receptor-C in mediating the vasorelaxant activity 154. Bevan, J. A. (1979). Some bases of differences in vascular response to
of C-type natriuretic peptide and endothelium-derived hyperpolarising sympathetic activity. Circulation Research, 45, 161–171.
4
4
factor. Cardiovascular Research, 74, 515–525. 155. Bevan, J. A., & Su, C. (1974). Variation of intra- and perisynaptic
130. Stingo, A. J., Clavell, A. L., Aarhus, L. L., et al. (1992). Cardiovascular adrenergic transmitter concentrations with width of synaptic cleft in vas-
and renal actions of C-type natriuretic peptide. American Journal of Phys- cular tissue. Journal of Pharmacology and Experimental Therapeutics, 190,
iology, 262, H308–H312. 30–38.
131. Scotland, R. S., Ahluwalia, A., & Hobbs, A. J. (2005). C-type natriuretic 156. Gallagher, D., & O’Rourke, M. (1993). What is the arterial pressure? In
peptide in vascular physiology and disease. Pharmacology & Therapeutics, M. O’Rourke, M. Safar, V. Dzau (Eds.), Arterial vasodilation. Mecha-
105, 85–93. nisms and therapy (pp. 134–148). Philadelphia: Lea & Febiger.

