Page 118 - Cardiac Nursing
P. 118
96.
p06
p06
4 A
9-0
9-0
1 A
P
a
a
M
M
P
0
8:4
8:4
009
009
0
1 A
9/2
pta
pta
ra
ra
9/2
g
03_
0-c
03_
9/0
9/0
0-c
L L LWB
LWBK340-c03_p069-096.qxd 09/09/2009 08:41 AM Page 94 Aptara
LWB
K34
K34
qxd
qxd
0
0
96.
g
e 9
4 A
e 9
94 PA R T I / Anatomy and Physiology
209. Thrasher, T. N. (2005). Baroreceptors, baroreceptor unloading, and the 233. Hainsworth, R. (1986). Vascular capacitance: Its control and impor-
long-term control of blood pressure. American Journal of Physiology— tance. Reviews of Physiology, Biochemistry & Pharmacology, 105, 101–173.
Regulatory, Integrative and Comparative Physiology, 288, R819–R827. 234. Rowell, L. (1973). Regulation of splanchnic blood flow in man. Physiol-
6
6
210. Thrasher, T. N. (2006). Arterial baroreceptor input contributes to long- ogist, 16, 127–142.
term control of blood pressure. Current Hypertension Report, 8, 249–254. 235. Rothe, C., & Gaddis, M. (1990). Autoregulation of cardiac output
211. Barrett, C. J., & Malpas, S. C. (2005). Problems, possibilities, and pit- by passive elastic characteristics of the vascular capacitance system.
falls in studying the arterial baroreflexes’ influence over long-term con- Circulation, 81, 360–368.
trol of blood pressure. American Journal of Physiology—Regulatory, Inte- 236. Guyton, A. (1955). Determination of cardiac output by equating venous
grative and Comparative Physiology, 288, R837–R845. return curves with cardiac response curves. Physiology in Review, 35,
212. Osborn, J. W., Jacob, F., & Guzman, P. (2005). A neural set point for the 123–129.
long-term control of arterial pressure: Beyond the arterial baroreceptor 237. Guyton A., Abernathy B., Langston J., et al. Relative importance of ve-
reflex. American Journal of Physiology—Regulatory, Integrative and Com- nous and arterial resistances in controlling venous return and cardiac
6
6
parative Physiology, 288, R846–R855. output. American Journal of Physiology, 196, 1008–1014, 1959.
213. Osborn, J. W. (2005). Hypothesis: Set-points and long-term control of 238. Guyton, A., Lindsey, A., Abernathy, B., et al. (1957). Venous return at
arterial pressure. A theoretical argument for a long-term arterial pressure various right atrial pressures and the normal venous return curve. Amer-
control system in the brain rather than the kidney. Clinical and Experi- ican Journal of Physiology, 189, 609–615.
mental Pharmacology and Physiology, 32, 384–393. 239. Brengelmann, G. L. (2003). A critical analysis of the view that right
214. Mellander, S. (1989). Functional aspects of myogenic vascular control. atrial pressure determines venous return. Journal of Applied Physiology,
4
7
4
Journal of Hypertension, 7(Suppl. 4), S21–S30. 94, 849–859.
7
215. Seddon, M. D., Chowienczyk, P. J., Brett, S. E., et al. (2008). Neuronal 240. Bridges, E. (2005). Hemodynamic monitoring. In S. Woods, E. Sivarajan
nitric oxide synthase regulates basal microvascular tone in humans in Froelicher, S. Motzer, et al. (Eds.), Cardiac nursing (pp. 81–108).
7
vivo. Circulation, 117, 1991–1996. Philadelphia: Lippincott.
7
216. Vallance, P., Collier, J., & Moncada, S. (1989). Effects of endothelium- 241. Brengelmann, G. L. (2006). Counterpoint: The classical Guyton view
derived nitric oxide on peripheral arteriolar tone in man. Lancet, 189, that mean systemic pressure, right atrial pressure, and venous resistance
997–1000. govern venous return is not correct. Journal of Applied Physiology, 101,
217. Sugawara, J., Komine, H., Hayashi, K., et al. (2007). Effect of systemic 1525–1526; discussion 1526–1527.
nitric oxide synthase inhibition on arterial stiffness in humans. Hyper- 242. Brengelmann, G. L. (2008). Learning opportunities in the study of
tension Research, 30, 411–415. Curran-Everett’s exploration of a classic paper on venous return.
218. Wilkinson, I., MacCallum, H., Cockcroft, J., et al. (2002). Inhibition of Advances in Physiological Education, 32, 242–243.
basal nitric oxide synthesis increases aortic augmentation index and pulse 243. Magder, S. (2006). Point: The classical Guyton view that mean systemic
wave velocity in vivo. British Journal of Clinical Pharmacology, 53, pressure, right atrial pressure, and venous resistance govern venous re-
189–192. turn is/is not correct. Journal of Applied Physiology, 101, 1523–1525.
219. Sugawara, J., Komine, H., Hayashi, K., et al. (2007). Relationship be- 244. Rothe, C. F. (1993). Mean circulatory filling pressure: Its meaning and
4
tween augmentation index obtained from carotid and radial artery pres- measurement. Journal of Applied Physiology, 74, 499–509.
4
sure waveforms. Journal of Hypertension, 25, 375–381. 245. Rothe, C. (2006). The classical Guyton view that mean systemic pres-
220. Celander, O. (1954). The range of control exercised by sympathicoad- sure, right atrial pressure, and venous resistance govern venous return
renal system. Acta Physiologica Scandinavia, 32(Suppl. 116), 1–132. is/is not correct. Journal of Applied Physiology, 101, 1529.
221. Johanson, B. (1980). Myogenic responses of vascular smooth muscle. In 246. Casey, D. P., & Hart, E. C. (2008). Cardiovascular function in humans
6
N. Stevens (Ed.), Smooth muscle contraction (pp. 457–472). New York: during exercise: Role of the muscle pump. Journal of Physiology, 586,
6
Marcel Dekker. 5045–5046.
222. Johnson, P. (1986). Autoregulation of blood flow. Circulation Research, 247. Rowland, T. W. (2001). The circulatory response to exercise: Role of the
59, 483–495. peripheral pump. International Journal of Sports Medicine, 22, 558–565.
223. Renkin, E. (1984). Control of microcirculation and blood-tissue ex- 248. Osada, T., Katsumura, T., Hamaoka, T., et al. (2002). Quantitative
change. In E. Renkin & C. Michel (Eds.), Handbook of physiology (pp. effects of respiration on venous return during single knee extension-
627–687). Bethesda, MD: American Physiological Society. flexion. International Journal of Sports Medicine, 23, 183–190.
224. Carlson, B. E., Arciero, J. C., & Secomb, T. W. (2008). Theoretical 249. Miller, J. D., Pegelow, D. F., Jacques, A. J., et al. (2005). Skeletal muscle
model of blood flow autoregulation: Roles of myogenic, shear-dependent, pump versus respiratory muscle pump: Modulation of venous return from
and metabolic responses. American Journal of Physiology Heart and Cir- the locomotor limb in humans. Journal of Physiology, 563, 925–943.
culatory Physiology, 295, H1572–H1579. 250. Michard, F., & Teboul, J. L. (2000). Using heart-lung interactions to assess
225. Schubert, R., & Mulvany, M. J. (1999). The myogenic response: Estab- fluid responsiveness during mechanical ventilation. Critical Care, 4, 282–289.
4
4
6
lished facts and attractive hypotheses. Clinical Science, 96, 313–326. 251. Krogh, A. (1912). The regulation of the supply of blood to the right
6
7
226. Feigl, E. (1989). The arterial system. In H. Patton, A. Fuchs, B. Hille, heart. Skandinavisches Archiv fur Physiologie, 27, 227–248.
7
et al. (Eds.), Textbook of physiology (pp. 849–859). Philadelphia: WB 252. Hamilton, W., Woodbury, R., & Harper, H. (1936). Physiologic rela-
Saunders. tionships between intrathoracic, intraspinal, and arterial pressures.
7
7
227. Arciero, J. C., Carlson, B. E., & Secomb, T. W. (2008). Theoretical JAMA, 107, 853–856.
model of metabolic blood flow regulation: Roles of ATP release by red 253. Hamilton, W., Woodbury, R., & Harper, H. (1944). Arterial, cere-
blood cells and conducted responses. American Journal of Physiology brospinal and venous pressures in man during cough and strain. American
Heart and Circulatory Physiology, 295, H1562–H1571. Journal of Physiology, 141, 42–50.
228. Hester, R. L., & Hammer, L. W. (2002). Venular-arteriolar communica- 254. Levin, A. (1966). A simple test of cardiac function based upon the heart
tion in the regulation of blood flow. American Journal of Physiology, 282, rate changes induced by the Valsalva Maneuver. American Journal of
R1280–R1285. Cardiology, 18, 90–99.
229. Johnson, P. (1980). The myogenic response. In D. Bohr, A. Somlyo, & 255. Smith, M., Beightol, L., Fritsch-Yelle, J., et al. (1996). Valsalva’s maneu-
H. Sparks (Eds.), Handbook of physiology, section 2, vol II, vascular smooth ver revisited: A quantitative method yielding insights into human auto-
muscle (pp. 409–442). Bethesda, MD: American Physiological Society. nomic control. American Journal of Physiology, 271, 1240–1249.
230. Lombard, J., & Duling, B. (1977). Relative importance of tissue oxygena- 256. Junqueira L. F., Jr. (2008). Teaching cardiac autonomic function dy-
tion and vascular smooth muscle hypoxia in determining arteriolar response namics employing the Valsalva (Valsalva-Weber) maneuver. Advantages
to occlusion in the hamster cheek pouch. Circular Research, 41, 365–373. in Physiological Education, 32, 100–106.
231. Rothe, C. (1983). Venous system: Physiology of the capacitance vessels. 257. McGuire J., Green R., Hauenstein V., et al. (1950). Bed pan deaths.
In J. Shepherd & F. Abboud (Eds.), Handbook of physiology. The cardio- American Practitioner, 1, 23–28.
vascular system. Peripheral circulation and organ blood flow (pp. 397–452). 258. Metzger B., & Therrien B. (1990). Effect of position on cardiovascu-
Bethesda, MD: American Physiological Society. lar response during the Valsalva Maneuver. Nursing Research, 39,
232. Flavahan, N., Linblad, L., Verbeuren, T., et al. (1985). Cooling and 198–202.
alpha-1 and alpha-2 adrenergic response in cutaneous veins: Role of 259. Sharpey-Schafer E. (1955). Effects of Valsalva’s manoeuvre on the nor-
receptor reserve. American Journal of Physiology, 249, H950–H955. mal and failing circulation. BMJ, 1, 693–695.

