Page 117 - Cardiac Nursing
P. 117
p06
P
9/2
qxd
0
9/0
8:4
1 A
M
009
ra
9-0
96.
K34
0-c
03_
LWB K34 0-c 03_ p06 9-0 96. qxd 0 9/0 9/2 009 0 0 8:4 1 A M P a a g e 9 3 A pta ra
LWB
LWBK340-c03_p069-096.qxd 09/09/2009 08:41 AM Page 93 Aptara
pta
e 9
3 A
g
C HAPTER 3 / Regulation of Cardiac Output and Blood Pressure 93
157. O’Rourke, M. (1990). What is blood pressure? American Journal of 183. Ross, J., Jr. (1976). Afterload mismatch and preload reserve: A concep-
Hypertension, 3, 803–810. tual framework for the analysis of ventricular function. Progress in Car-
158. Agabiti-Rosei, E., Mancia, G., O’Rourke, M. F., et al. (2007). Central diovascular Disease, 18, 255–264.
blood pressure measurements and antihypertensive therapy: A consensus 184. Ross, J., Jr., Franklin, D., & Sasayama, S. (1976). Preload, afterload, and
document. Hypertension, 50, 154–160. the role of afterload mismatch in the descending limb of cardiac func-
159. Hainsworth, R. (1995). The control and physiological importance of tion. European Journal of Cardiology, 4(Suppl.), 77–86.
heart rate. In M. Malik & A. Camms (Eds.), Heart rate variability (pp. 185. Bombardini, T. (2005). Myocardial contractility in the echo lab: Molecu-
3–19), Armonk, NY: Futura Publishing. lar, cellular and pathophysiological basis. Cardiovascular Ultrasound, 3, 27.
160. Levy, M. N. (1997). Neural control of cardiac function. Baillieres Clin- 186. Endoh, M. (2004). Force-frequency relationship in intact mammalian
ical Neurology, 6, 227–244. ventricular myocardium: Physiological and pathophysiological rele-
6
6
161. Spyer, M. (2000). Vagal preganglionic neurons innervating the heart. In vance. European Journal of Pharmacology, 500, 73–86.
E. Page, H. Fozzard, & R. Solaro (Eds.), Handbook of physiology, section 187. Ross, J., Jr., Miura, T., Kambayashi M., et al. (1995). Adrenergic control
2: The cardiovascular system, vol I: The heart (pp. 213–239). Bethesda, of the force-frequency relation. Circulation, 92, 2327–2332.
Y
Y
MD: American Physiological Society. 188. Yamanaka, T., Onishi, K., Tanabe, M., et al. (2006). Force- and relaxation-
162. Monahan, K. D. (2007). Effect of aging on baroreflex function in hu- frequency relations in patients with diastolic heart failure. American
mans. American Journal of Physiology–Regulatory, Integrative and Com- Heart Journal, 152, 966.e1–966.e7.
parative Physiology, 293, R3–R12. 189. Kroeker, C. A., Shrive, N. G., Belenkie, I., et al. (2003). Pericardium
163. Rea, R. F., & Eckberg, D. L. (1987). Carotid baroreceptor-muscle sym- modulates left and right ventricular stroke volumes to compensate for
4
pathetic relation in humans. American Journal of Physiology, 253, sudden changes in atrial volume. American Journal of Physiology, 284,
4
R929–R934. H2247–H2254.
164. Ponikowski, P., & Banasiak, W. (2001). Chemosensitivity in chronic 190. Spodick, D. (1997). The pericardium. A comprehensive textbook. New
heart failure. Heart Failure Monitor, 1, 126–131. York: Marcel Dekker, Inc.
165. Ponikowski, P., Chua, T. P., Anker, S. D., et al. (2001). Peripheral 191. Belenkie, I., Sas, R., Mitchell, J., et al. (2004). Opening the pericardium
chemoreceptor hypersensitivity: An ominous sign in patients with during pulmonary artery constriction improves cardiac function. Journal
4
4
6
chronic heart failure. Circulation, 104, 544–549. of Applied Physiology, 96, 917–922.
6
166. Eckberg, D. L., & Karemaker, J. M. (2008). Point: Counterpoint 192. Belenkie, I., Smith, E. R., & Tyberg, J. V. (2001). Ventricular interac-
“Respiratory sinus arrhythmia is due to a central mechanism vs. the tion: From bench to bedside. Annals of Medicine, 33, 236–241.
baroreflex mechanism.” Journal of Applied Physiology. Epub ahead of 193. Horne, S. G., Belenkie, I., Tyberg, J. V., et al. (2000). Pericardial pressure
print. in experimental chronic heart failure. Canadian Journal of Cardiology, 16,
6
6
167. Eckberg, D. L. (2000). Physiological basis for human autonomic 607–613.
rhythms. Annals of Medicine, 32, 341–349. 194. Kardon, D. E., Borczuk, A. C., & Factor, S. M. (2000). Mechanism of
168. Janicki, J., Sheriff, D., Robotham, J., et al. (1996). Cardiac output dur- pericardial expansion with cardiac enlargement. Cardiovascular Pathol-
ing exercise: Contributions of the cardiac, circulatory, and respiratory ogy, 9, 9–15.
systems. In L. Rowell & J. Sheperd (Eds.), Handbook of physiology. Exer- 195. Hammond, H., White, F., Bhargava, V., et al. (1992). Heart size and
cise: Regulation and integration of multiple systems (pp. 649–704). maximal cardiac output are limited by the pericardium. American Jour-
Bethesda, MD: Oxford University Press. nal of Physiology, 263, H1675–H1681.
169. Sheriff, D., Zhou, X., Scher, A., et al. (1993). Dependence of cardiac fill- 196. De Hert, S. G., ten Broecke, P. W., Rodrigus, I. E., et al. (2001). The ef-
ing pressure on cardiac output during rest and dynamic exercise in dogs. fects of the pericardium on length-dependent regulation of left ventric-
American Journal of Physiology, 265, H316–H322. ular function in coronary artery surgery patients. Journal of Cardiotho-
170. Miller, D., Gleason, W., & Whalen, R. (1962). Effect of ventricular rate racic and Vascular Anesthesia, 15, 300–305.
in the cardiac output in the dog with chronic heart block. Circulation 197. Stray-Gundersen, J., Musch, T., Haidet, G., et al. (1986). The effect of
Research, 10, 658–663. pericardiectomy on maximal oxygen consumption and maximal cardiac
171. Rushmer, R. (1959). Constance of stroke volume in ventricular re- output in untrained dogs. Circulation Research, 58, 523–530.
6
6
sponses to exertion. American Journal of Physiology, 196, 745–750. 198. Hunter, S., Smith, G. H., & Angelini, G. D. (1992). Adverse hemody-
172. Bevegård, S., Jonsson, B., Karlof, I., et al. (1967). Effect of changes in namic effects of pericardial closure soon after open heart operation.
ventricular rate on cardiac output and central pressures at rest and dur- Annals of Thoracic Surgery, 53, 425–429.
ing exercise in patients with artificial pacemakers. Cardiovascular 199. Rao, V., Komeda, M., Weisel, R. D., et al. (1999). Should the peri-
Research, 1, 21–33. cardium be closed routinely after heart operations? Annals of Thoracic
173. Sonnenblick, E. H. (1962). Force-velocity relations in mammalian heart Surgery, 67, 484–488.
7
7
muscle. American Journal of Physiology, 202, 931–939. 200. Cowley, A. J. (1992). Long-term control of arterial blood pressure. Phys-
174. Starling, E. (1918). The Linacre Lecture on the Law of the Heart, Given at iology in Review, 72, 231–300.
Cambridge, 1915. London: Longmans, Green. 201. Granger, J. P., Alexander, B. T., & Llinas, M. (2002). Mechanisms of
175. Sarnoff, S. J. (1955). Myocardial contractility as described by ventricu- pressure natriuresis. Current Hypertension Report, 4, 152–159.
4
4
lar function curves; observations on Starling’s Law of the Heart. Physiol- 202. Guyton, A. C. (1991). Blood pressure control–special role of the kidneys
ogy in Review, 35, 107–122. and body fluids. Science, 252, 1813–1816.
176. Weber, K., Janicki, J., Reeves, R., et al. (1974). Determinants of stroke 203. Brooks, V., & Osborn, J. (1995). Hormonal-sympathetic interactions in
volume in the isolated canine heart. Journal of Applied Physiology, 37, long-term regulation of arterial pressure: An hypothesis. American Jour-
7
7
742–747. nal of Physiology, 268, R1343–R1358.
177. Hancock, W. O., Martyn, D. A., & Huntsman, L. L. (1993). Ca 2
and 204. Evans, R. G., Majid, D. S., & Eppel, G. A. (2005). Mechanisms medi-
segment length dependence of isometric force kinetics in intact ferret ating pressure natriuresis: What we know and what we need to find out.
cardiac muscle. Circulation Research, 73, 603–611. Clinical and Experimental Pharmacology and Physiology, 32, 400–409.
178. Shiels, H. A., & White, E. (2008). The Frank-Starling mechanism in 205. Bie, P., Wamberg, S., & Kjolby, M. (2004). Volume natriuresis vs. pres-
vertebrate cardiac myocytes. Journal of Experimental Biology, 211, sure natriuresis. Acta Physiologica Scandinavica, 181, 495–503.
2005–2013. 206. Brooks, V. L., & Sved, A. F. (2005). Pressure to change? Re-evaluating
179. Lakatta, E. G. (1987). Starling’s law of the heart is explained by an inti- the role of baroreceptors in the long-term control of arterial pressure.
mate interaction of muscle length and myofilament calcium activation. American Journal of Physiology–Regulatory, Integrative and Comparative
Journal of the American College of Cardiology, 10, 1157–1164. Physiology, 288, R815–R818.
180. Brady, A. (1991). Mechanical properties of isolated cardiac myocytes. 207. Joyner, M. J., Charkoudian, N., & Wallin, B. G. (2008). A sympathetic
Physiology in Review, 71, 413–428. view of the sympathetic nervous system and human blood pressure reg-
181. Hedges, J. R. (1983). Preload and afterload revisited. JEN, 9, 262–267. ulation. Experimental Physiology, 93, 715–724.
182. Covell, J., & Ross, J. (2002). Systolic and diastolic function (mechanics) 208. Lohmeier, T. E., Hildebrandt, D. A., Warren, S., et al. (2005). Recent
of the intact heart. In E. Page, H. Fozzard, & R. Solaro (Eds.), Hand- insights into the interactions between the baroreflex and the kidneys in
book of physiology: Section 2. The cardiovascular system (pp. 741–784). hypertension. American Journal of Physiology–Regulatory, Integrative and
Bethesda, MD: American Physiological Society. Comparative Physiology, 288, R828–R836.

