Page 1168 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 1168

1019.e8  Part VII  Hematologic Malignancies


        311.  Schwartzberg PL, Stall AM, Hardin JD, et al: Mice homozygous for the   of  acute  lymphoblastic  leukemia:  A  children’s  oncology  group  study
            ablm1 mutation show poor viability and depletion of selected B and T   report. Biol Blood Marrow Transplant 13(2):218–227, 2007.
            cell populations. Cell 65(7):1165–1175, 1991.     333.  Kiehl  MG,  Kraut  L,  Schwerdtfeger  R,  et al:  Outcome  of  allogeneic
        312.  Van Etten RA, Jackson P, Baltimore D: The mouse type IV c-abl gene   hematopoietic stem-cell transplantation in adult patients with acute lym-
            product is a nuclear protein, and activation of transforming ability is   phoblastic leukemia: no difference in related compared with unrelated
            associated with cytoplasmic localization. Cell 58(4):669–678, 1989.  transplant in first complete remission. J Clin Oncol 22(14):2816–2825,
        313.  Lugo TG,  Pendergast  AM,  Muller  AJ,  et al: Tyrosine  kinase  activity   2004.
            and  transformation  potency  of  bcr-abl  oncogene  products.  Science   334.  Talano  JM,  Casper  JT,  Camitta  BM,  et al:  Alternative  donor  bone
            247(4946):1079–1082, 1990.                            marrow transplant for children with Philadelphia chromosome ALL.
        314.  Daley GQ, Baltimore D: Transformation of an interleukin 3-dependent   Bone Marrow Transplant 37(2):135–141, 2006.
            hematopoietic cell line by the chronic myelogenous leukemia-specific   335.  von  Bubnoff  N,  Peschel  C,  Duyster  J:  Resistance  of  Philadelphia-
            P210bcr/abl protein. Proc Natl Acad Sci USA 85(23):9312–9316, 1988.  chromosome positive leukemia towards the kinase inhibitor imatinib
        315.  Elefanty AG, Hariharan IK, Cory S: bcr-abl, the hallmark of chronic   (STI571,  Glivec):  a  targeted  oncoprotein  strikes  back.  Leukemia
            myeloid leukaemia in man, induces multiple haemopoietic neoplasms   17(5):829–838, 2003.
            in mice. EMBO J 9(4):1069–1078, 1990.             336.  Gorre ME, Sawyers CL: Molecular mechanisms of resistance to STI571
        316.  Gishizky ML, Johnson-White J, Witte ON: Efficient transplantation   in chronic myeloid leukemia. Curr Opin Hematol 9(4):303–307, 2002.
            of BCR-ABL-induced chronic myelogenous leukemia-like syndrome in   337.  Schultz KR, Bowman WP, Aledo A, et al: Improved early event-free
            mice. Proc Natl Acad Sci USA 90(8):3755–3759, 1993.   survival  with  imatinib  in  Philadelphia  chromosome-positive  acute
        317.  Kelliher  M,  Knott  A,  McLaughlin  J,  et al:  Differences  in  oncogenic   lymphoblastic leukemia: a children’s oncology group study. J Clin Oncol
            potency but not target cell specificity distinguish the two forms of the   27(31):5175–5181, 2009.
            BCR/ABL oncogene. Mol Cell Biol 11(9):4710–4716, 1991.  338.  Biondi A, Schrappe M, De Lorenzo P, et al: Imatinib after induction for
        318.  Cortez  D,  Reuther  G,  Pendergast  AM: The  Bcr-Abl  tyrosine  kinase   treatment of children and adolescents with Philadelphia-chromosome-
            activates mitogenic signaling pathways and stimulates G1-to-S phase   positive  acute  lymphoblastic  leukaemia  (EsPhALL):  a  randomised,
            transition in hematopoietic cells. Oncogene 15(19):2333–2342, 1997.  open-label, intergroup study. Lancet Oncol 13(9):936–945, 2012.
        319.  Varticovski  L,  Daley  GQ,  Jackson  P,  et al:  Activation  of  phosphati-  339.  Bassan R, Rossi G, Pogliani EM, et al: Chemotherapy-phased imatinib
            dylinositol 3-kinase in cells expressing abl oncogene variants. Mol Cell   pulses improve long-term outcome of adult patients with Philadelphia
            Biol 11(2):1107–1113, 1991.                           chromosome-positive  acute  lymphoblastic  leukemia:  Northern  Italy
        320.  Reuther  JY,  Reuther  GW,  Cortez  D,  et al:  A  requirement  for   Leukemia  Group  protocol  09/00.  J  Clin  Oncol  28(22):3644–3652,
            NF-kappaB activation in Bcr-Abl-mediated transformation. Genes Dev   2010.
            12(7):968–981, 1998.                              340.  Foa R, Vitale A, Vignetti M, et al: Dasatinib as first-line treatment for
        321.  Carlesso N, Frank DA, Griffin JD: Tyrosyl phosphorylation and DNA   adult patients with Philadelphia chromosome-positive acute lympho-
            binding  activity  of  signal  transducers  and  activators  of  transcription   blastic leukemia. Blood 118(25):6521–6528, 2011.
            (STAT) proteins in hematopoietic cell lines transformed by Bcr/Abl. J   341.  Ravandi F, O’Brien S, Thomas D, et al: First report of phase 2 study
            Exp Med 183(3):811–820, 1996.                         of dasatinib with hyper-CVAD for the frontline treatment of patients
        322.  Raitano AB, Halpern JR, Hambuch TM, et al: The Bcr-Abl leukemia   with  Philadelphia  chromosome-positive  (Ph+)  acute  lymphoblastic
            oncogene activates Jun kinase and requires Jun for transformation. Proc   leukemia. Blood 116(12):2070–2077, 2010.
            Natl Acad Sci USA 92(25):11746–11750, 1995.       342.  Quintas-Cardama A, Kantarjian H, Cortes J: Imatinib and beyond–
        323.  Sawyers CL, McLaughlin J, Witte ON: Genetic requirement for Ras in   exploring the full potential of targeted therapy for CML. Nat Rev Clin
            the transformation of fibroblasts and hematopoietic cells by the Bcr-Abl   Oncol 6(9):535–543, 2009.
            oncogene. J Exp Med 181(1):307–313, 1995.         343.  Druker  BJ:  Circumventing  resistance  to  kinase-inhibitor  therapy.  N
        324.  Skorski   T,   Kanakaraj   P,   Nieborowska-Skorska   M,   et al:   Engl J Med 354(24):2594–2596, 2006.
            Phosphatidylinositol-3  kinase  activity  is  regulated  by  BCR/ABL  and   344.  O’Hare T, Corbin AS, Druker BJ: Targeted CML therapy: controlling
            is required for the growth of Philadelphia chromosome-positive cells.   drug resistance, seeking cure. Curr Opin Genet Dev 16(1):92–99, 2006.
            Blood 86(2):726–736, 1995.                        345.  Saito M, Gao J, Basso K, et al: A signaling pathway mediating down-
        325.  Skorski T, Bellacosa A, Nieborowska-Skorska M, et al: Transformation   regulation of BCL6 in germinal center B cells is blocked by BCL6 gene
            of  hematopoietic  cells  by  BCR/ABL  requires  activation  of  a  PI-3k/  alterations in B cell lymphoma. Cancer Cell 12(3):280–292, 2007.
            Akt-dependent pathway. EMBO J 16(20):6151–6161, 1997.  346.  Duy C, Hurtz C, Shojaee S, et al: BCL6 enables Ph+ acute lympho-
        326.  Skorski T: BCR/ABL regulates response to DNA damage: the role in   blastic leukaemia cells to survive BCR-ABL1 kinase inhibition. Nature
            resistance to genotoxic treatment and in genomic instability. Oncogene   473(7347):384–388, 2011.
            21(56):8591–8604, 2002.                           347.  Den Boer ML, van Slegtenhorst M, De Menezes RX, et al: A subtype of
        327.  Ribeiro RC, Abromowitch M, Raimondi SC, et al: Clinical and bio-  childhood acute lymphoblastic leukaemia with poor treatment outcome:
            logic  hallmarks  of  the  Philadelphia  chromosome  in  childhood  acute   a genome-wide classification study. Lancet Oncol 10(2):125–134, 2009.
            lymphoblastic leukemia. Blood 70(4):948–953, 1987.  348.  Mullighan CG, Su X, Zhang J, et al: Deletion of IKZF1 and prognosis
        328.  Crist  W,  Carroll  A,  Shuster  J,  et al:  Philadelphia  chromosome  posi-  in acute lymphoblastic leukemia. N Engl J Med 360(5):470–480, 2009.
            tive childhood acute lymphoblastic leukemia: clinical and cytogenetic   349.  Roberts KG, Morin RD, Zhang J, et al: Genetic alterations activating
            characteristics  and  treatment  outcome.  A  Pediatric  Oncology  Group   kinase and cytokine receptor signaling in high-risk acute lymphoblastic
            study. Blood 76(3):489–494, 1990.                     leukemia. Cancer Cell 22(2):153–166, 2012.
        329.  Fletcher  JA,  Lynch  EA,  Kimball  VM,  et al:  Translocation  (9;22)  is   350.  Loh ML, Zhang J, Harvey RC, et al: Tyrosine kinome sequencing of
            associated with extremely poor prognosis in intensively treated children   pediatric acute lymphoblastic leukemia: a report from the Children’s
            with acute lymphoblastic leukemia. Blood 77(3):435–439, 1991.  Oncology Group TARGET Project. Blood 121(3):485–488, 2013.
        330.  Arico M, Valsecchi MG, Camitta B, et al: Outcome of treatment in   351.  Roberts KG, Li Y, Payne-Turner D, et al: Targetable kinase-activating
            children with Philadelphia chromosome-positive acute lymphoblastic   lesions  in  Ph-like  acute  lymphoblastic  leukemia.  N  Engl  J  Med
            leukemia. N Engl J Med 342(14):998–1006, 2000.        371(11):1005–1015, 2014.
        331.  Balduzzi  A,  Valsecchi  MG,  Uderzo  C,  et al:  Chemotherapy  versus   352.  Graux C, Cools J, Melotte C, et al: Fusion of NUP214 to ABL1 on
            allogeneic  transplantation  for  very-high-risk  childhood  acute  lym-  amplified episomes in T-cell acute lymphoblastic leukemia. Nat Genet
            phoblastic  leukaemia  in  first  complete  remission:  comparison  by   36(10):1084–1089, 2004.
            genetic  randomisation  in  an  international  prospective  study.  Lancet   353.  Geng H, Hurtz C, Lenz KB, et al: Self-enforcing feedback activation
            366(9486):635–642, 2005.                              between  BCL6  and  pre-B  cell  receptor  signaling  defines  a  distinct
        332.  Satwani P, Sather H, Ozkaynak F, et al: Allogeneic bone marrow trans-  subtype of acute lymphoblastic leukemia. Cancer Cell 27(3):409–425,
            plantation in first remission for children with ultra-high-risk features   2015.
   1163   1164   1165   1166   1167   1168   1169   1170   1171   1172   1173