Page 1169 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 1169

Chapter 64  Pathobiology of Acute Lymphoblastic Leukemia  1019.e9


            354.  van der Veer A, van der Velden VH, Willemse ME, et al: Interference   377.  Gutierrez A, Look AT: NOTCH and PI3K-AKT pathways intertwined.
                with pre-B-cell receptor signaling offers a therapeutic option for TCF3-  Cancer Cell 12(5):411–413, 2007.
                rearranged  childhood  acute  lymphoblastic  leukemia.  Blood  Cancer  J   378.  Liu  P,  Cheng  H,  Roberts TM,  et al: Targeting  the  phosphoinositide
                4:e181, 2014.                                         3-kinase  pathway  in  cancer.  Nat  Rev  Drug  Discov  8(8):627–644,
            355.  Der  CJ,  Krontiris TG,  Cooper  GM: Transforming  genes  of  human   2009.
                bladder  and  lung  carcinoma  cell  lines  are  homologous  to  the  ras   379.  Mackarehtschian K, Hardin JD, Moore KA, et al: Targeted disruption
                genes of Harvey and Kirsten sarcoma viruses. Proc Natl Acad Sci USA   of  the  flk2/flt3  gene  leads  to  deficiencies  in  primitive  hematopoietic
                79(11):3637–3640, 1982.                               progenitors. Immunity 3(1):147–161, 1995.
            356.  Parada  LF,  Tabin  CJ,  Shih  C,  et al:  Human  EJ  bladder  carcinoma   380.  Gilliland  DG,  Griffin  JD: The  roles  of  FLT3  in  hematopoiesis  and
                oncogene  is  homologue  of  Harvey  sarcoma  virus  ras  gene.  Nature   leukemia. Blood 100(5):1532–1542, 2002.
                297(5866):474–478, 1982.                          381.  Gilliland DG: Molecular genetics of human leukemias: new insights
            357.  Shimizu  K,  Goldfarb  M,  Suard  Y,  et al: Three  human  transforming   into therapy. Semin Hematol 39(4 Suppl 3):6–11, 2002.
                genes are related to the viral ras oncogenes. Proc Natl Acad Sci USA   382.  Nakao M, Yokota S, Iwai T, et al: Internal tandem duplication of the flt3
                80(8):2112–2116, 1983.                                gene found in acute myeloid leukemia. Leukemia 10(12):1911–1918,
            358.  Shimizu K, Goldfarb M, Perucho M, et al: Isolation and preliminary   1996.
                characterization of the transforming gene of a human neuroblastoma   383.  Yamamoto Y, Kiyoi H, Nakano Y, et al: Activating mutation of D835
                cell line. Proc Natl Acad Sci USA 80(2):383–387, 1983.  within the activation loop of FLT3 in human hematologic malignan-
            359.  Schubbert S, Shannon K, Bollag G: Hyperactive Ras in developmental   cies. Blood 97(8):2434–2439, 2001.
                disorders and cancer. Nat Rev Cancer 7(4):295–308, 2007.  384.  Armstrong SA, Mabon ME, Silverman LB, et al: FLT3 mutations in
            360.  Perentesis JP, Bhatia S, Boyle E, et al: RAS oncogene mutations and   childhood  acute  lymphoblastic  leukemia.  Blood  103(9):3544–3546,
                outcome  of  therapy  for  childhood  acute  lymphoblastic  leukemia.   2004.
                Leukemia 18(4):685–692, 2004.                     385.  Paietta  E,  Ferrando  AA,  Neuberg  D,  et al:  Activating  FLT3  muta-
            361.  Liang DC, Shih LY, Fu JF, et al: K-Ras mutations and N-Ras mutations   tions  in  CD117/KIT(+) T-cell  acute  lymphoblastic  leukemias.  Blood
                in childhood acute leukemias with or without mixed-lineage leukemia   104(2):558–560, 2004.
                gene rearrangements. Cancer 106(4):950–956, 2006.  386.  Griffith J, Black J, Faerman C, et al: The structural basis for autoinhibi-
            362.  Mar  BG,  Bullinger  LB,  McLean  KM,  et al:  Mutations  in  epigenetic   tion of FLT3 by the juxtamembrane domain. Mol Cell 13(2):169–178,
                regulators  including  SETD2  are  gained  during  relapse  in  paediatric   2004.
                acute lymphoblastic leukaemia. Nat Commun 5:3469, 2014.  387.  Kiyoi H, Ohno R, Ueda R, et al: Mechanism of constitutive activa-
            363.  Andersson AK, Ma J, Wang J, et al: The landscape of somatic mutations   tion of FLT3 with internal tandem duplication in the juxtamembrane
                in  infant  MLL-rearranged  acute  lymphoblastic  leukemias.  Nat  Genet   domain. Oncogene 21(16):2555–2563, 2002.
                47(4):330–337, 2015.                              388.  Armstrong  SA,  Kung  AL,  Mabon  ME,  et al:  Inhibition  of  FLT3  in
            364.  Nikolaev SI, Garieri M, Santoni F, et al: Frequent cases of RAS-mutated   MLL. Validation of a therapeutic target identified by gene expression
                Down syndrome acute lymphoblastic leukaemia lack JAK2 mutations.   based classification. Cancer Cell 3(2):173–183, 2003.
                Nat Commun 5:4654, 2014.                          389.  Stirewalt DL, Radich JP: The role of FLT3 in haematopoietic malignan-
            365.  Irving  J,  Matheson  E,  Minto  L,  et al:  Ras  pathway  mutations  are   cies. Nat Rev Cancer 3(9):650–665, 2003.
                prevalent  in  relapsed  childhood  acute  lymphoblastic  leukemia  and   390.  Cortes JE, Kantarjian H, Foran JM, et al: Phase I study of quizartinib
                confer sensitivity to MEK inhibition. Blood 124(23):3420–3430, 2014.  administered daily to patients with relapsed or refractory acute myeloid
            366.  Ward AF, Braun BS, Shannon KM: Targeting oncogenic Ras signaling   leukemia  irrespective  of  FMS-like  tyrosine  kinase  3-internal  tandem
                in hematologic malignancies. Blood 120(17):3397–3406, 2012.  duplication status. J Clin Oncol 31(29):3681–3687, 2013.
            367.  Dail  M,  Li  Q,  McDaniel  A,  et al:  Mutant  Ikzf1,  KrasG12D,  and   391.  Markovic A, MacKenzie KL, Lock RB: FLT-3: a new focus in the under-
                Notch1 cooperate in T lineage leukemogenesis and modulate responses   standing of acute leukemia. Int J Biochem Cell Biol 37(6):1168–1172,
                to targeted agents. Proc Natl Acad Sci USA 107(11):5106–5111, 2010.  2005.
            368.  Shieh  A, Ward  AF,  Donlan  KL,  et al:  Defective  K-Ras  oncoproteins   392.  Brown P, Levis M, Shurtleff S, et al: FLT3 inhibition selectively kills
                overcome impaired effector activation to initiate leukemia in vivo. Blood   childhood acute lymphoblastic leukemia cells with high levels of FLT3
                121(24):4884–4893, 2013.                              expression. Blood 105(2):812–820, 2005.
            369.  Manning  BD,  Cantley  LC:  AKT/PKB  signaling:  navigating  down-  393.  Mullighan CG, Collins-Underwood JR, Phillips LA, et al: Rearrange-
                stream. Cell 129(7):1261–1274, 2007.                  ment of CRLF2 in B-progenitor- and Down syndrome-associated acute
            370.  Chalhoub N, Baker SJ: PTEN and the PI3-kinase pathway in cancer.   lymphoblastic leukemia. Nat Genet 41(11):1243–1246, 2009.
                Annu Rev Pathol 4:127–150, 2009.                  394.  Yoda  A,  Yoda  Y,  Chiaretti  S,  et al:  Functional  screening  identifies
            371.  Cully M, You H, Levine AJ, et al: Beyond PTEN mutations: the PI3K   CRLF2  in  precursor  B-cell  acute  lymphoblastic  leukemia.  Proc  Natl
                pathway as an integrator of multiple inputs during tumorigenesis. Nat   Acad Sci USA 107(1):252–257, 2010.
                Rev Cancer 6(3):184–192, 2006.                    395.  Hertzberg L, Vendramini E, Ganmore I, et al: Down syndrome acute
            372.  Maser RS, Choudhury B, Campbell PJ, et al: Chromosomally unstable   lymphoblastic leukemia, a highly heterogeneous disease in which aber-
                mouse  tumours  have  genomic  alterations  similar  to  diverse  human   rant expression of CRLF2 is associated with mutated JAK2: a report
                cancers. Nature 447(7147):966–971, 2007.              from the International BFM Study Group. Blood 115(5):1006–1017,
            373.  Larson Gedman A, Chen Q, Kugel Desmoulin S, et al: The impact of   2010.
                NOTCH1, FBW7 and PTEN mutations on prognosis and downstream   396.  Chen IM, Harvey RC, Mullighan CG, et al: Outcome modeling with
                signaling  in  pediatric  T-cell  acute  lymphoblastic  leukemia:  a  report   CRLF2, IKZF1, JAK, and minimal residual disease in pediatric acute
                from  the  Children’s  Oncology  Group.  Leukemia  23(8):1417–1425,   lymphoblastic  leukemia:  a  Children’s  Oncology  Group  study.  Blood
                2009.                                                 119(15):3512–3522, 2012.
            374.  Piovan E, Yu J, Tosello V, et al: Direct reversal of glucocorticoid resis-  397.  van der Veer A, Waanders E, Pieters R, et al: Independent prognostic
                tance by AKT inhibition in acute lymphoblastic leukemia. Cancer Cell   value of BCR-ABL1-like signature and IKZF1 deletion, but not high
                24(6):766–776, 2013.                                  CRLF2  expression,  in  children  with  B-cell  precursor  ALL.  Blood
            375.  Blackburn  JS,  Liu  S,  Wilder  JL,  et al:  Clonal  evolution  enhances   122(15):2622–2629, 2013.
                leukemia-propagating  cell  frequency  in  T  cell  acute  lymphoblastic   398.  Tefferi A, Pardanani A: JAK inhibitors in myeloproliferative neoplasms:
                leukemia  through  Akt/mTORC1  pathway  activation.  Cancer  Cell   rationale,  current  data  and  perspective.  Blood  Rev  25(5):229–237,
                25(3):366–378, 2014.                                  2011.
            376.  Reynolds C, Roderick JE, LaBelle JL, et al: Repression of BIM medi-  399.  Weigert  O,  Lane  AA,  Bird  L,  et al:  Genetic  resistance  to  JAK2
                ates  survival  signaling  by  MYC  and  AKT  in  high-risk  T-cell  acute   enzymatic  inhibitors  is  overcome  by  HSP90  inhibition.  J  Exp  Med
                lymphoblastic leukemia. Leukemia 28(9):1819–1827, 2014.  209(2):259–273, 2012.
   1164   1165   1166   1167   1168   1169   1170   1171   1172   1173   1174