Page 1169 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 1169
Chapter 64 Pathobiology of Acute Lymphoblastic Leukemia 1019.e9
354. van der Veer A, van der Velden VH, Willemse ME, et al: Interference 377. Gutierrez A, Look AT: NOTCH and PI3K-AKT pathways intertwined.
with pre-B-cell receptor signaling offers a therapeutic option for TCF3- Cancer Cell 12(5):411–413, 2007.
rearranged childhood acute lymphoblastic leukemia. Blood Cancer J 378. Liu P, Cheng H, Roberts TM, et al: Targeting the phosphoinositide
4:e181, 2014. 3-kinase pathway in cancer. Nat Rev Drug Discov 8(8):627–644,
355. Der CJ, Krontiris TG, Cooper GM: Transforming genes of human 2009.
bladder and lung carcinoma cell lines are homologous to the ras 379. Mackarehtschian K, Hardin JD, Moore KA, et al: Targeted disruption
genes of Harvey and Kirsten sarcoma viruses. Proc Natl Acad Sci USA of the flk2/flt3 gene leads to deficiencies in primitive hematopoietic
79(11):3637–3640, 1982. progenitors. Immunity 3(1):147–161, 1995.
356. Parada LF, Tabin CJ, Shih C, et al: Human EJ bladder carcinoma 380. Gilliland DG, Griffin JD: The roles of FLT3 in hematopoiesis and
oncogene is homologue of Harvey sarcoma virus ras gene. Nature leukemia. Blood 100(5):1532–1542, 2002.
297(5866):474–478, 1982. 381. Gilliland DG: Molecular genetics of human leukemias: new insights
357. Shimizu K, Goldfarb M, Suard Y, et al: Three human transforming into therapy. Semin Hematol 39(4 Suppl 3):6–11, 2002.
genes are related to the viral ras oncogenes. Proc Natl Acad Sci USA 382. Nakao M, Yokota S, Iwai T, et al: Internal tandem duplication of the flt3
80(8):2112–2116, 1983. gene found in acute myeloid leukemia. Leukemia 10(12):1911–1918,
358. Shimizu K, Goldfarb M, Perucho M, et al: Isolation and preliminary 1996.
characterization of the transforming gene of a human neuroblastoma 383. Yamamoto Y, Kiyoi H, Nakano Y, et al: Activating mutation of D835
cell line. Proc Natl Acad Sci USA 80(2):383–387, 1983. within the activation loop of FLT3 in human hematologic malignan-
359. Schubbert S, Shannon K, Bollag G: Hyperactive Ras in developmental cies. Blood 97(8):2434–2439, 2001.
disorders and cancer. Nat Rev Cancer 7(4):295–308, 2007. 384. Armstrong SA, Mabon ME, Silverman LB, et al: FLT3 mutations in
360. Perentesis JP, Bhatia S, Boyle E, et al: RAS oncogene mutations and childhood acute lymphoblastic leukemia. Blood 103(9):3544–3546,
outcome of therapy for childhood acute lymphoblastic leukemia. 2004.
Leukemia 18(4):685–692, 2004. 385. Paietta E, Ferrando AA, Neuberg D, et al: Activating FLT3 muta-
361. Liang DC, Shih LY, Fu JF, et al: K-Ras mutations and N-Ras mutations tions in CD117/KIT(+) T-cell acute lymphoblastic leukemias. Blood
in childhood acute leukemias with or without mixed-lineage leukemia 104(2):558–560, 2004.
gene rearrangements. Cancer 106(4):950–956, 2006. 386. Griffith J, Black J, Faerman C, et al: The structural basis for autoinhibi-
362. Mar BG, Bullinger LB, McLean KM, et al: Mutations in epigenetic tion of FLT3 by the juxtamembrane domain. Mol Cell 13(2):169–178,
regulators including SETD2 are gained during relapse in paediatric 2004.
acute lymphoblastic leukaemia. Nat Commun 5:3469, 2014. 387. Kiyoi H, Ohno R, Ueda R, et al: Mechanism of constitutive activa-
363. Andersson AK, Ma J, Wang J, et al: The landscape of somatic mutations tion of FLT3 with internal tandem duplication in the juxtamembrane
in infant MLL-rearranged acute lymphoblastic leukemias. Nat Genet domain. Oncogene 21(16):2555–2563, 2002.
47(4):330–337, 2015. 388. Armstrong SA, Kung AL, Mabon ME, et al: Inhibition of FLT3 in
364. Nikolaev SI, Garieri M, Santoni F, et al: Frequent cases of RAS-mutated MLL. Validation of a therapeutic target identified by gene expression
Down syndrome acute lymphoblastic leukaemia lack JAK2 mutations. based classification. Cancer Cell 3(2):173–183, 2003.
Nat Commun 5:4654, 2014. 389. Stirewalt DL, Radich JP: The role of FLT3 in haematopoietic malignan-
365. Irving J, Matheson E, Minto L, et al: Ras pathway mutations are cies. Nat Rev Cancer 3(9):650–665, 2003.
prevalent in relapsed childhood acute lymphoblastic leukemia and 390. Cortes JE, Kantarjian H, Foran JM, et al: Phase I study of quizartinib
confer sensitivity to MEK inhibition. Blood 124(23):3420–3430, 2014. administered daily to patients with relapsed or refractory acute myeloid
366. Ward AF, Braun BS, Shannon KM: Targeting oncogenic Ras signaling leukemia irrespective of FMS-like tyrosine kinase 3-internal tandem
in hematologic malignancies. Blood 120(17):3397–3406, 2012. duplication status. J Clin Oncol 31(29):3681–3687, 2013.
367. Dail M, Li Q, McDaniel A, et al: Mutant Ikzf1, KrasG12D, and 391. Markovic A, MacKenzie KL, Lock RB: FLT-3: a new focus in the under-
Notch1 cooperate in T lineage leukemogenesis and modulate responses standing of acute leukemia. Int J Biochem Cell Biol 37(6):1168–1172,
to targeted agents. Proc Natl Acad Sci USA 107(11):5106–5111, 2010. 2005.
368. Shieh A, Ward AF, Donlan KL, et al: Defective K-Ras oncoproteins 392. Brown P, Levis M, Shurtleff S, et al: FLT3 inhibition selectively kills
overcome impaired effector activation to initiate leukemia in vivo. Blood childhood acute lymphoblastic leukemia cells with high levels of FLT3
121(24):4884–4893, 2013. expression. Blood 105(2):812–820, 2005.
369. Manning BD, Cantley LC: AKT/PKB signaling: navigating down- 393. Mullighan CG, Collins-Underwood JR, Phillips LA, et al: Rearrange-
stream. Cell 129(7):1261–1274, 2007. ment of CRLF2 in B-progenitor- and Down syndrome-associated acute
370. Chalhoub N, Baker SJ: PTEN and the PI3-kinase pathway in cancer. lymphoblastic leukemia. Nat Genet 41(11):1243–1246, 2009.
Annu Rev Pathol 4:127–150, 2009. 394. Yoda A, Yoda Y, Chiaretti S, et al: Functional screening identifies
371. Cully M, You H, Levine AJ, et al: Beyond PTEN mutations: the PI3K CRLF2 in precursor B-cell acute lymphoblastic leukemia. Proc Natl
pathway as an integrator of multiple inputs during tumorigenesis. Nat Acad Sci USA 107(1):252–257, 2010.
Rev Cancer 6(3):184–192, 2006. 395. Hertzberg L, Vendramini E, Ganmore I, et al: Down syndrome acute
372. Maser RS, Choudhury B, Campbell PJ, et al: Chromosomally unstable lymphoblastic leukemia, a highly heterogeneous disease in which aber-
mouse tumours have genomic alterations similar to diverse human rant expression of CRLF2 is associated with mutated JAK2: a report
cancers. Nature 447(7147):966–971, 2007. from the International BFM Study Group. Blood 115(5):1006–1017,
373. Larson Gedman A, Chen Q, Kugel Desmoulin S, et al: The impact of 2010.
NOTCH1, FBW7 and PTEN mutations on prognosis and downstream 396. Chen IM, Harvey RC, Mullighan CG, et al: Outcome modeling with
signaling in pediatric T-cell acute lymphoblastic leukemia: a report CRLF2, IKZF1, JAK, and minimal residual disease in pediatric acute
from the Children’s Oncology Group. Leukemia 23(8):1417–1425, lymphoblastic leukemia: a Children’s Oncology Group study. Blood
2009. 119(15):3512–3522, 2012.
374. Piovan E, Yu J, Tosello V, et al: Direct reversal of glucocorticoid resis- 397. van der Veer A, Waanders E, Pieters R, et al: Independent prognostic
tance by AKT inhibition in acute lymphoblastic leukemia. Cancer Cell value of BCR-ABL1-like signature and IKZF1 deletion, but not high
24(6):766–776, 2013. CRLF2 expression, in children with B-cell precursor ALL. Blood
375. Blackburn JS, Liu S, Wilder JL, et al: Clonal evolution enhances 122(15):2622–2629, 2013.
leukemia-propagating cell frequency in T cell acute lymphoblastic 398. Tefferi A, Pardanani A: JAK inhibitors in myeloproliferative neoplasms:
leukemia through Akt/mTORC1 pathway activation. Cancer Cell rationale, current data and perspective. Blood Rev 25(5):229–237,
25(3):366–378, 2014. 2011.
376. Reynolds C, Roderick JE, LaBelle JL, et al: Repression of BIM medi- 399. Weigert O, Lane AA, Bird L, et al: Genetic resistance to JAK2
ates survival signaling by MYC and AKT in high-risk T-cell acute enzymatic inhibitors is overcome by HSP90 inhibition. J Exp Med
lymphoblastic leukemia. Leukemia 28(9):1819–1827, 2014. 209(2):259–273, 2012.

