Page 146 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 146
Chapter 9 Hematopoietic Stem Cell Biology 110.e7
273. Hahn CN, et al: Heritable GATA2 mutations associated with familial 295. Burmeister T, et al: Clinical features and prognostic implications
myelodysplastic syndrome and acute myeloid leukemia. Nat Genet of TCF3-PBX1 and ETV6-RUNX1 in adult acute lymphoblas-
43:1012–1017, 2011. doi: 10.1038/ng.913. tic leukemia. Haematologica 95:241–246, 2010. doi: 10.3324/
274. Ostergaard P, et al: Mutations in GATA2 cause primary lymphedema haematol.2009.011346.
associated with a predisposition to acute myeloid leukemia (Emberger 296. Nourse J, et al: Chromosomal translocation t(1;19) results in synthesis
syndrome). Nat Genet 43:929–931, 2011. doi: 10.1038/ng.923. of a homeobox fusion mRNA that codes for a potential chimeric
275. Chen MJ, Yokomizo T, Zeigler BM, et al: Runx1 is required for the transcription factor. Cell 60:535–545, 1990.
endothelial to haematopoietic cell transition but not thereafter. Nature 297. Hock H, et al: Tel/Etv6 is an essential and selective regulator of adult
457:887–891, 2009. doi: 10.1038/nature07619. hematopoietic stem cell survival. Genes Dev 18:2336–2341, 2004. doi:
276. Okuda T, van Deursen J, Hiebert SW, et al: AML1, the target 10.1101/gad.1239604.
of multiple chromosomal translocations in human leukemia, is 298. Shurtleff SA, et al: TEL/AML1 fusion resulting from a cryptic t(12;21)
essential for normal fetal liver hematopoiesis. Cell 84:321–330, is the most common genetic lesion in pediatric ALL and defines a sub-
1996. group of patients with an excellent prognosis. Leukemia 9:1985–1989,
277. Sasaki K, et al: Absence of fetal liver hematopoiesis in mice deficient in 1995.
transcriptional coactivator core binding factor beta. Proc Natl Acad Sci 299. Greaves MF, Wiemels J: Origins of chromosome translocations in
USA 93:12359–12363, 1996. childhood leukaemia. Nat Rev Cancer 3:639–649, 2003. doi: 10.1038/
278. Wang Q, et al: The CBFbeta subunit is essential for CBFalpha2 nrc1164.
(AML1) function in vivo. Cell 87:697–708, 1996. 300. Kataoka K, et al: Evi1 is essential for hematopoietic stem cell self-
279. Nottingham WT, et al: Runx1-mediated hematopoietic stem-cell renewal, and its expression marks hematopoietic cells with long-term
emergence is controlled by a Gata/Ets/SCL-regulated enhancer. Blood multilineage repopulating activity. J Exp Med 208:2403–2416, 2011.
110:4188–4197, 2007. doi: 10.1182/blood-2007-07-100883. doi: 10.1084/jem.20110447.
280. Lancrin C, et al: GFI1 and GFI1B control the loss of endothelial iden- 301. Groschel S, et al: High EVI1 expression predicts outcome in younger
tity of hemogenic endothelium during hematopoietic commitment. adult patients with acute myeloid leukemia and is associated with
Blood 120:314–322, 2012. doi: 10.1182/blood-2011-10-386094. distinct cytogenetic abnormalities. J Clin Oncol 28:2101–2107, 2010.
281. Lichtinger M, et al: RUNX1 reshapes the epigenetic landscape at the doi: 10.1200/JCO.2009.26.0646.
onset of haematopoiesis. EMBO J 31:4318–4333, 2012. doi: 10.1038/ 302. Lugthart S, et al: High EVI1 levels predict adverse outcome in acute
emboj.2012.275. myeloid leukemia: prevalence of EVI1 overexpression and chromosome
282. Iacovino M, et al: HoxA3 is an apical regulator of haemogenic endo- 3q26 abnormalities underestimated. Blood 111:4329–4337, 2008. doi:
thelium. Nat Cell Biol 13:72–78, 2011. doi: 10.1038/ncb2137. 10.1182/blood-2007-10-119230.
283. Byrd JC, et al: Pretreatment cytogenetic abnormalities are predictive of 303. Balgobind BV, et al: EVI1 overexpression in distinct subtypes of
induction success, cumulative incidence of relapse, and overall survival pediatric acute myeloid leukemia. Leukemia 24:942–949, 2010. doi:
in adult patients with de novo acute myeloid leukemia: results from 10.1038/leu.2010.47.
Cancer and Leukemia Group B (CALGB 8461). Blood 100:4325–4336, 304. Helbling D, et al: The leukemic fusion gene AML1-MDS1-EVI1 sup-
2002. doi: 10.1182/blood-2002-03-0772. presses CEBPA in acute myeloid leukemia by activation of Calreticulin.
284. Yuan Y, et al: AML1-ETO expression is directly involved in the Proc Natl Acad Sci USA 101:13312–13317, 2004. doi: 10.1073/
development of acute myeloid leukemia in the presence of additional pnas.0404731101.
mutations. Proc Natl Acad Sci USA 98:10398–10403, 2001. doi: 305. Raynaud SD, et al: Fluorescence in situ hybridization analysis of t(3;
10.1073/pnas.171321298. 12)(q26; p13): a recurring chromosomal abnormality involving the
285. Castilla LH, et al: The fusion gene Cbfb-MYH11 blocks myeloid dif- TEL gene (ETV6) in myelodysplastic syndromes. Blood 88:682–689,
ferentiation and predisposes mice to acute myelomonocytic leukaemia. 1996.
Nat Genet 23:144–146, 1999. doi: 10.1038/13776. 306. Pearson JC, Lemons D, McGinnis W: Modulating Hox gene functions
286. Corces-Zimmerman MR, Hong WJ, Weissman IL, et al: Preleukemic during animal body patterning. Nat Rev Genet 6:893–904, 2005. doi:
mutations in human acute myeloid leukemia affect epigenetic regulators 10.1038/nrg1726.
and persist in remission. Proc Natl Acad Sci USA 111:2548–2553, 2014. 307. Shen WF, et al: Hox homeodomain proteins exhibit selective complex
doi: 10.1073/pnas.1324297111. stabilities with Pbx and DNA. Nucleic Acids Res 24:898–906, 1996.
287. Welch JS, et al: The origin and evolution of mutations in acute myeloid 308. Shen WF, et al: AbdB-like Hox proteins stabilize DNA binding by the
leukemia. Cell 150:264–278, 2012. doi: 10.1016/j.cell.2012.06.023. Meis1 homeodomain proteins. Mol Cell Biol 17:6448–6458, 1997.
288. Mangan JK, Speck NA: RUNX1 mutations in clonal myeloid disorders: 309. Alharbi RA, Pettengell R, Pandha HS, et al: The role of HOX genes in
from conventional cytogenetics to next generation sequencing, a story normal hematopoiesis and acute leukemia. Leukemia 27:1000–1008,
40 years in the making. Crit Rev Oncog 16:77–91, 2011. 2013. doi: 10.1038/leu.2012.356.
289. Lacombe J, et al: Scl regulates the quiescence and the long-term com- 310. Thorsteinsdottir U, et al: Overexpression of HOXA10 in murine
petence of hematopoietic stem cells. Blood 115:792–803, 2010. doi: hematopoietic cells perturbs both myeloid and lymphoid differentia-
10.1182/blood-2009-01-201384. tion and leads to acute myeloid leukemia. Mol Cell Biol 17:495–505,
290. Laurenti E, et al: CDK6 levels regulate quiescence exit in human hema- 1997.
topoietic stem cells. Cell Stem Cell 16:302–313, 2015. doi: 10.1016/j. 311. Kroon E, et al: Hoxa9 transforms primary bone marrow cells
stem.2015.01.017. through specific collaboration with Meis1a but not Pbx1b. EMBO J
291. Wadman IA, et al: The LIM-only protein Lmo2 is a bridging molecule 17:3714–3725, 1998. doi: 10.1093/emboj/17.13.3714.
assembling an erythroid, DNA-binding complex which includes the 312. Thorsteinsdottir U, et al: The oncoprotein E2A-Pbx1a collaborates
TAL1, E47, GATA-1 and Ldb1/NLI proteins. EMBO J 16:3145–3157, with Hoxa9 to acutely transform primary bone marrow cells. Mol Cell
1997. doi: 10.1093/emboj/16.11.3145. Biol 19:6355–6366, 1999.
292. Semerad CL, Mercer EM, Inlay MA, et al: E2A proteins maintain 313. Nakamura T, Largaespada DA, Shaughnessy JD, Jr, et al: Cooperative
the hematopoietic stem cell pool and promote the maturation of activation of Hoxa and Pbx1-related genes in murine myeloid leukae-
myelolymphoid and myeloerythroid progenitors. Proc Natl Acad Sci mias. Nat Genet 12:149–153, 1996. doi: 10.1038/ng0296-149.
USA 106:1930–1935, 2009. doi: 10.1073/pnas.0808866106. 314. Golub TR, et al: Molecular classification of cancer: class discovery and
293. Li L, et al: Nuclear adaptor Ldb1 regulates a transcriptional program class prediction by gene expression monitoring. Science 286:531–537,
essential for the maintenance of hematopoietic stem cells. Nat Immunol 1999.
12:129–136, 2011. doi: 10.1038/ni.1978. 315. Borrow J, et al: The t(7;11)(p15;p15) translocation in acute myeloid
294. Lim KC, et al: Conditional Gata2 inactivation results in HSC loss leukaemia fuses the genes for nucleoporin NUP98 and class I
and lymphatic mispatterning. J Clin Invest 122:3705–3717, 2012. doi: homeoprotein HOXA9. Nat Genet 12:159–167, 1996. doi: 10.1038/
10.1172/JCI61619. ng0296-159.

