Page 147 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 147
110.e8 Part II Cellular Basis of Hematology
316. Nakamura T, et al: Fusion of the nucleoporin gene NUP98 to 338. Cabezas-Wallscheid N, et al: Identification of regulatory networks in
HOXA9 by the chromosome translocation t(7;11)(p15;p15) in human HSCs and their immediate progeny via integrated proteome, transcrip-
myeloid leukaemia. Nat Genet 12:154–158, 1996. doi: 10.1038/ tome, and DNA methylome analysis. Cell Stem Cell 15:507–522, 2014.
ng0296-154. doi: 10.1016/j.stem.2014.07.005.
317. Gough SM, Slape CI, Aplan PD: NUP98 gene fusions and hemato- 339. Jiang Y, et al: Aberrant DNA methylation is a dominant mechanism in
poietic malignancies: common themes and new biologic insights. Blood MDS progression to AML. Blood 113:1315–1325, 2009. doi: 10.1182/
118:6247–6257, 2011. doi: 10.1182/blood-2011-07-328880. blood-2008-06-163246.
318. Romana SP, et al: NUP98 rearrangements in hematopoietic malignan- 340. Figueroa ME, et al: DNA methylation signatures identify biologically
cies: a study of the Groupe Francophone de Cytogenetique Hema- distinct subtypes in acute myeloid leukemia. Cancer Cell 17:13–27,
tologique. Leukemia 20:696–706, 2006. doi: 10.1038/sj.leu.2404130. 2010. doi: 10.1016/j.ccr.2009.11.020.
319. Andreeff M, et al: HOX expression patterns identify a common signa- 341. Bestor TH: Activation of mammalian DNA methyltransferase by cleav-
ture for favorable AML. Leukemia 22:2041–2047, 2008. doi: 10.1038/ age of a Zn binding regulatory domain. EMBO J 11:2611–2617, 1992.
leu.2008.198. 342. Gruenbaum Y, Cedar H, Razin A: Substrate and sequence specificity of
320. Yu BD, Hess JL, Horning SE, et al: Altered Hox expression and a eukaryotic DNA methylase. Nature 295:620–622, 1982.
segmental identity in Mll-mutant mice. Nature 378:505–508, 1995. 343. Challen GA, et al: Dnmt3a is essential for hematopoietic stem cell
doi: 10.1038/378505a0. differentiation. Nat Genet 44:23–31, 2012. doi: 10.1038/ng.1009.
321. Milne TA, et al: MLL targets SET domain methyltransferase activity to 344. Challen GA, et al: Dnmt3a and Dnmt3b have overlapping and distinct
Hox gene promoters. Mol Cell 10:1107–1117, 2002. functions in hematopoietic stem cells. Cell Stem Cell 15:350–364,
322. Nakamura T, et al: ALL-1 is a histone methyltransferase that assembles 2014. doi: 10.1016/j.stem.2014.06.018.
a supercomplex of proteins involved in transcriptional regulation. Mol 345. Ley TJ, et al: DNMT3A mutations in acute myeloid leukemia. N Engl
Cell 10:1119–1128, 2002. J Med 363:2424–2433, 2010. doi: 10.1056/NEJMoa1005143.
323. Armstrong SA, et al: MLL translocations specify a distinct gene expres- 346. Shlush LI, et al: Identification of pre-leukaemic haematopoietic stem
sion profile that distinguishes a unique leukemia. Nat Genet 30:41–47, cells in acute leukaemia. Nature 506:328–333, 2014. doi: 10.1038/
2002. doi: 10.1038/ng765. nature13038.
324. Krivtsov AV, et al: Transformation from committed progenitor to 347. Grossmann V, et al: The molecular profile of adult T-cell acute lympho-
leukaemia stem cell initiated by MLL-AF9. Nature 442:818–822, 2006. blastic leukemia: mutations in RUNX1 and DNMT3A are associated
doi: 10.1038/nature04980. with poor prognosis in T-ALL. Genes Chromosomes Cancer 52:410–422,
325. Ayton PM, Cleary ML: Transformation of myeloid progenitors by 2013. doi: 10.1002/gcc.22039.
MLL oncoproteins is dependent on Hoxa7 and Hoxa9. Genes Dev 348. Yang L, Rau R, Goodell MA: DNMT3A in haematological malignan-
17:2298–2307, 2003. doi: 10.1101/gad.1111603. cies. Nat Rev Cancer 15:152–165, 2015. doi: 10.1038/nrc3895.
326. Faber J, et al: HOXA9 is required for survival in human MLL- 349. Kriaucionis S, Heintz N: The nuclear DNA base 5-hydroxymethylcytosine
rearranged acute leukemias. Blood 113:2375–2385, 2009. doi: 10.1182/ is present in Purkinje neurons and the brain. Science 324:929–930,
blood-2007-09-113597. 2009. doi: 10.1126/science.1169786.
327. Beck D, et al: Genome-wide analysis of transcriptional regulators in 350. Tahiliani M, et al: Conversion of 5-methylcytosine to
human HSPCs reveals a densely interconnected network of coding 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1.
and noncoding genes. Blood 122:e12–e22, 2013. doi: 10.1182/ Science 324:930–935, 2009. doi: 10.1126/science.1170116.
blood-2013-03-490425. 351. Kohli RM, Zhang Y: TET enzymes, TDG and the dynamics of DNA
328. Wilson NK, et al: Combinatorial transcriptional control in blood demethylation. Nature 502:472–479, 2013. doi: 10.1038/nature12750.
stem/progenitor cells: genome-wide analysis of ten major transcrip- 352. Cimmino L, et al: TET1 is a tumor suppressor of hematopoietic
tional regulators. Cell Stem Cell 7:532–544, 2010. doi: 10.1016/j. malignancy. Nat Immunol 16:653–662, 2015. doi: 10.1038/ni.3148.
stem.2010.07.016. 353. Moran-Crusio K, et al: Tet2 loss leads to increased hematopoietic stem
329. Moignard V, et al: Characterization of transcriptional networks in cell self-renewal and myeloid transformation. Cancer Cell 20:11–24,
blood stem and progenitor cells using high-throughput single-cell gene 2011. doi: 10.1016/j.ccr.2011.06.001.
expression analysis. Nat Cell Biol 15:363–372, 2013. doi: 10.1038/ 354. Shide K, et al: TET2 is essential for survival and hematopoietic stem
ncb2709. cell homeostasis. Leukemia 26:2216–2223, 2012. doi: 10.1038/
330. Guo G, et al: Mapping cellular hierarchy by single-cell analysis of the leu.2012.94.
cell surface repertoire. Cell Stem Cell 13:492–505, 2013. doi: 10.1016/j. 355. Jankowska AM, et al: Mutational spectrum analysis of chronic myelo-
stem.2013.07.017. monocytic leukemia includes genes associated with epigenetic regula-
331. Novershtern N, et al: Densely interconnected transcriptional circuits tion: UTX, EZH2, and DNMT3A. Blood 118:3932–3941, 2011. doi:
control cell states in human hematopoiesis. Cell 144:296–309, 2011. 10.1182/blood-2010-10-311019.
doi: 10.1016/j.cell.2011.01.004. 356. Chou WC, et al: TET2 mutation is an unfavorable prognostic factor
332. Berger SL, Kouzarides T, Shiekhattar R, et al: An operational in acute myeloid leukemia patients with intermediate-risk cytogenetics.
definition of epigenetics. Genes Dev 23:781–783, 2009. doi: 10.1101/ Blood 118:3803–3810, 2011. doi: 10.1182/blood-2011-02-339747.
gad.1787609. 357. Delhommeau F, et al: Mutation in TET2 in myeloid cancers. N Engl J
333. Goodell MA: Epigenetics in hematology: introducing a collec- Med 360:2289–2301, 2009. doi: 10.1056/NEJMoa0810069.
tion of reviews. Blood 121:3059–3060, 2013. doi: 10.1182/ 358. Metzeler KH, et al: TET2 mutations improve the new European
blood-2012-12-475467. LeukemiaNet risk classification of acute myeloid leukemia: a Cancer
334. Cancer Genome Atlas Research N: Genomic and epigenomic and Leukemia Group B study. J Clin Oncol 29:1373–1381, 2011. doi:
landscapes of adult de novo acute myeloid leukemia. N Engl J Med 10.1200/JCO.2010.32.7742.
368:2059–2074, 2013. doi: 10.1056/NEJMoa1301689. 359. Greenblatt SM, Nimer SD: Chromatin modifiers and the promise of
335. Bock C, et al: DNA methylation dynamics during in vivo differentia- epigenetic therapy in acute leukemia. Leukemia 28:1396–1406, 2014.
tion of blood and skin stem cells. Mol Cell 47:633–647, 2012. doi: doi: 10.1038/leu.2014.94.
10.1016/j.molcel.2012.06.019. 360. Abbas S, et al: Acquired mutations in the genes encoding IDH1 and
336. Hodges E, et al: Directional DNA methylation changes and complex IDH2 both are recurrent aberrations in acute myeloid leukemia:
intermediate states accompany lineage specificity in the adult hema- prevalence and prognostic value. Blood 116:2122–2126, 2010. doi:
topoietic compartment. Mol Cell 44:17–28, 2011. doi: 10.1016/j. 10.1182/blood-2009-11-250878.
molcel.2011.08.026. 361. Boissel N, et al: Prognostic impact of isocitrate dehydrogenase enzyme
337. Ji H, et al: Comprehensive methylome map of lineage commitment isoforms 1 and 2 mutations in acute myeloid leukemia: a study by the
from haematopoietic progenitors. Nature 467:338–342, 2010. doi: Acute Leukemia French Association group. J Clin Oncol 28:3717–3723,
10.1038/nature09367. 2010. doi: 10.1200/JCO.2010.28.2285.

