Page 147 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 147

110.e8  Part II  Cellular Basis of Hematology


        316.  Nakamura  T,  et al:  Fusion  of  the  nucleoporin  gene  NUP98  to   338.  Cabezas-Wallscheid N, et al: Identification of regulatory networks in
            HOXA9 by the chromosome translocation t(7;11)(p15;p15) in human   HSCs and their immediate progeny via integrated proteome, transcrip-
            myeloid  leukaemia.  Nat  Genet  12:154–158,  1996.  doi:  10.1038/  tome, and DNA methylome analysis. Cell Stem Cell 15:507–522, 2014.
            ng0296-154.                                           doi: 10.1016/j.stem.2014.07.005.
        317.  Gough SM, Slape CI, Aplan PD: NUP98 gene fusions and hemato-  339.  Jiang Y, et al: Aberrant DNA methylation is a dominant mechanism in
            poietic malignancies: common themes and new biologic insights. Blood   MDS progression to AML. Blood 113:1315–1325, 2009. doi: 10.1182/
            118:6247–6257, 2011. doi: 10.1182/blood-2011-07-328880.  blood-2008-06-163246.
        318.  Romana SP, et al: NUP98 rearrangements in hematopoietic malignan-  340.  Figueroa ME, et al: DNA methylation signatures identify biologically
            cies:  a  study  of  the  Groupe  Francophone  de  Cytogenetique  Hema-  distinct  subtypes  in  acute  myeloid  leukemia.  Cancer  Cell  17:13–27,
            tologique. Leukemia 20:696–706, 2006. doi: 10.1038/sj.leu.2404130.  2010. doi: 10.1016/j.ccr.2009.11.020.
        319.  Andreeff M, et al: HOX expression patterns identify a common signa-  341.  Bestor TH: Activation of mammalian DNA methyltransferase by cleav-
            ture for favorable AML. Leukemia 22:2041–2047, 2008. doi: 10.1038/  age of a Zn binding regulatory domain. EMBO J 11:2611–2617, 1992.
            leu.2008.198.                                     342.  Gruenbaum Y, Cedar H, Razin A: Substrate and sequence specificity of
        320.  Yu  BD,  Hess  JL,  Horning  SE,  et al:  Altered  Hox  expression  and   a eukaryotic DNA methylase. Nature 295:620–622, 1982.
            segmental identity in Mll-mutant mice. Nature 378:505–508, 1995.   343.  Challen  GA,  et al:  Dnmt3a  is  essential  for  hematopoietic  stem  cell
            doi: 10.1038/378505a0.                                differentiation. Nat Genet 44:23–31, 2012. doi: 10.1038/ng.1009.
        321.  Milne TA, et al: MLL targets SET domain methyltransferase activity to   344.  Challen GA, et al: Dnmt3a and Dnmt3b have overlapping and distinct
            Hox gene promoters. Mol Cell 10:1107–1117, 2002.      functions  in  hematopoietic  stem  cells.  Cell  Stem  Cell  15:350–364,
        322.  Nakamura T, et al: ALL-1 is a histone methyltransferase that assembles   2014. doi: 10.1016/j.stem.2014.06.018.
            a supercomplex of proteins involved in transcriptional regulation. Mol   345.  Ley TJ, et al: DNMT3A mutations in acute myeloid leukemia. N Engl
            Cell 10:1119–1128, 2002.                              J Med 363:2424–2433, 2010. doi: 10.1056/NEJMoa1005143.
        323.  Armstrong SA, et al: MLL translocations specify a distinct gene expres-  346.  Shlush LI, et al: Identification of pre-leukaemic haematopoietic stem
            sion profile that distinguishes a unique leukemia. Nat Genet 30:41–47,   cells  in  acute  leukaemia.  Nature  506:328–333,  2014.  doi:  10.1038/
            2002. doi: 10.1038/ng765.                             nature13038.
        324.  Krivtsov  AV,  et al:  Transformation  from  committed  progenitor  to   347.  Grossmann V, et al: The molecular profile of adult T-cell acute lympho-
            leukaemia stem cell initiated by MLL-AF9. Nature 442:818–822, 2006.   blastic leukemia: mutations in RUNX1 and DNMT3A are associated
            doi: 10.1038/nature04980.                             with poor prognosis in T-ALL. Genes Chromosomes Cancer 52:410–422,
        325.  Ayton  PM,  Cleary  ML:  Transformation  of  myeloid  progenitors  by   2013. doi: 10.1002/gcc.22039.
            MLL  oncoproteins  is  dependent  on  Hoxa7  and  Hoxa9.  Genes  Dev   348.  Yang L, Rau R, Goodell MA: DNMT3A in haematological malignan-
            17:2298–2307, 2003. doi: 10.1101/gad.1111603.         cies. Nat Rev Cancer 15:152–165, 2015. doi: 10.1038/nrc3895.
        326.  Faber  J,  et al:  HOXA9  is  required  for  survival  in  human  MLL-  349.  Kriaucionis S, Heintz N: The nuclear DNA base 5-hydroxymethylcytosine
            rearranged acute leukemias. Blood 113:2375–2385, 2009. doi: 10.1182/  is  present  in  Purkinje  neurons  and  the  brain.  Science  324:929–930,
            blood-2007-09-113597.                                 2009. doi: 10.1126/science.1169786.
        327.  Beck  D,  et al:  Genome-wide  analysis  of  transcriptional  regulators  in   350.  Tahiliani   M,   et al:   Conversion   of   5-methylcytosine   to
            human  HSPCs  reveals  a  densely  interconnected  network  of  coding   5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1.
            and  noncoding  genes.  Blood  122:e12–e22,  2013.  doi:  10.1182/  Science 324:930–935, 2009. doi: 10.1126/science.1170116.
            blood-2013-03-490425.                             351.  Kohli RM, Zhang Y: TET enzymes, TDG and the dynamics of DNA
        328.  Wilson  NK,  et al:  Combinatorial  transcriptional  control  in  blood   demethylation. Nature 502:472–479, 2013. doi: 10.1038/nature12750.
            stem/progenitor  cells:  genome-wide  analysis  of  ten  major  transcrip-  352.  Cimmino  L,  et al:  TET1  is  a  tumor  suppressor  of  hematopoietic
            tional  regulators.  Cell  Stem  Cell  7:532–544,  2010.  doi:  10.1016/j.  malignancy. Nat Immunol 16:653–662, 2015. doi: 10.1038/ni.3148.
            stem.2010.07.016.                                 353.  Moran-Crusio K, et al: Tet2 loss leads to increased hematopoietic stem
        329.  Moignard  V,  et al:  Characterization  of  transcriptional  networks  in   cell  self-renewal  and  myeloid  transformation.  Cancer  Cell  20:11–24,
            blood stem and progenitor cells using high-throughput single-cell gene   2011. doi: 10.1016/j.ccr.2011.06.001.
            expression  analysis.  Nat  Cell  Biol  15:363–372,  2013.  doi:  10.1038/  354.  Shide K, et al: TET2 is essential for survival and hematopoietic stem
            ncb2709.                                              cell  homeostasis.  Leukemia  26:2216–2223,  2012.  doi:  10.1038/
        330.  Guo G, et al: Mapping cellular hierarchy by single-cell analysis of the   leu.2012.94.
            cell surface repertoire. Cell Stem Cell 13:492–505, 2013. doi: 10.1016/j.  355.  Jankowska AM, et al: Mutational spectrum analysis of chronic myelo-
            stem.2013.07.017.                                     monocytic leukemia includes genes associated with epigenetic regula-
        331.  Novershtern  N,  et al:  Densely  interconnected  transcriptional  circuits   tion: UTX, EZH2, and DNMT3A. Blood 118:3932–3941, 2011. doi:
            control cell states in human hematopoiesis. Cell 144:296–309, 2011.   10.1182/blood-2010-10-311019.
            doi: 10.1016/j.cell.2011.01.004.                  356.  Chou WC, et al: TET2 mutation is an unfavorable prognostic factor
        332.  Berger  SL,  Kouzarides  T,  Shiekhattar  R,  et al:  An  operational   in acute myeloid leukemia patients with intermediate-risk cytogenetics.
            definition of epigenetics. Genes Dev 23:781–783, 2009. doi: 10.1101/  Blood 118:3803–3810, 2011. doi: 10.1182/blood-2011-02-339747.
            gad.1787609.                                      357.  Delhommeau F, et al: Mutation in TET2 in myeloid cancers. N Engl J
        333.  Goodell  MA:  Epigenetics  in  hematology:  introducing  a  collec-  Med 360:2289–2301, 2009. doi: 10.1056/NEJMoa0810069.
            tion  of  reviews.  Blood  121:3059–3060,  2013.  doi:  10.1182/  358.  Metzeler  KH,  et al:  TET2  mutations  improve  the  new  European
            blood-2012-12-475467.                                 LeukemiaNet risk classification of acute myeloid leukemia: a Cancer
        334.  Cancer  Genome  Atlas  Research  N:  Genomic  and  epigenomic   and Leukemia Group B study. J Clin Oncol 29:1373–1381, 2011. doi:
            landscapes  of  adult  de  novo  acute  myeloid  leukemia.  N  Engl  J  Med   10.1200/JCO.2010.32.7742.
            368:2059–2074, 2013. doi: 10.1056/NEJMoa1301689.  359.  Greenblatt SM, Nimer SD: Chromatin modifiers and the promise of
        335.  Bock C, et al: DNA methylation dynamics during in vivo differentia-  epigenetic therapy in acute leukemia. Leukemia 28:1396–1406, 2014.
            tion of blood and skin stem cells. Mol Cell 47:633–647, 2012. doi:   doi: 10.1038/leu.2014.94.
            10.1016/j.molcel.2012.06.019.                     360.  Abbas S, et al: Acquired mutations in the genes encoding IDH1 and
        336.  Hodges E, et al: Directional DNA methylation changes and complex   IDH2  both  are  recurrent  aberrations  in  acute  myeloid  leukemia:
            intermediate  states  accompany  lineage  specificity  in  the  adult  hema-  prevalence  and  prognostic  value.  Blood  116:2122–2126,  2010.  doi:
            topoietic  compartment.  Mol  Cell  44:17–28,  2011.  doi:  10.1016/j.  10.1182/blood-2009-11-250878.
            molcel.2011.08.026.                               361.  Boissel N, et al: Prognostic impact of isocitrate dehydrogenase enzyme
        337.  Ji  H,  et al:  Comprehensive  methylome  map  of  lineage  commitment   isoforms 1 and 2 mutations in acute myeloid leukemia: a study by the
            from  haematopoietic  progenitors.  Nature  467:338–342,  2010.  doi:   Acute Leukemia French Association group. J Clin Oncol 28:3717–3723,
            10.1038/nature09367.                                  2010. doi: 10.1200/JCO.2010.28.2285.
   142   143   144   145   146   147   148   149   150   151   152