Page 148 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 148
Chapter 9 Hematopoietic Stem Cell Biology 110.e9
362. Marcucci G, et al: IDH1 and IDH2 gene mutations identify novel 385. International Human Genome Sequencing C, et al: Initial sequencing
molecular subsets within de novo cytogenetically normal acute myeloid and analysis of the human genome. Nature 409:860–921, 2001. doi:
leukemia: a Cancer and Leukemia Group B study. J Clin Oncol 10.1038/35057062.
28:2348–2355, 2010. doi: 10.1200/JCO.2009.27.3730. 386. Pennisi E: Genomics. ENCODE project writes eulogy for junk DNA.
363. Paschka P, et al: IDH1 and IDH2 mutations are frequent genetic Science 337(1159):1161, 2012. doi: 10.1126/science.337.6099.1159.
alterations in acute myeloid leukemia and confer adverse prognosis in 387. Klimmeck D, et al: Transcriptome-wide profiling and posttranscrip-
cytogenetically normal acute myeloid leukemia with NPM1 mutation tional analysis of hematopoietic stem/progenitor cell differentiation
without FLT3 internal tandem duplication. J Clin Oncol 28:3636–3643, toward myeloid commitment. Stem Cell Reports 3:858–875, 2014. doi:
2010. doi: 10.1200/JCO.2010.28.3762. 10.1016/j.stemcr.2014.08.012.
364. Figueroa ME, et al: Leukemic IDH1 and IDH2 mutations result in 388. Guo H, Ingolia NT, Weissman JS, et al: Mammalian microRNAs pre-
a hypermethylation phenotype, disrupt TET2 function, and impair dominantly act to decrease target mRNA levels. Nature 466:835–840,
hematopoietic differentiation. Cancer Cell 18:553–567, 2010. doi: 2010. doi: 10.1038/nature09267.
10.1016/j.ccr.2010.11.015. 389. Lim LP, et al: Microarray analysis shows that some microRNAs down-
365. Xu W, et al: Oncometabolite 2-hydroxyglutarate is a competitive regulate large numbers of target mRNAs. Nature 433:769–773, 2005.
inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell doi: 10.1038/nature03315.
19:17–30, 2011. doi: 10.1016/j.ccr.2010.12.014. 390. Gruber JJ, et al: Ars2 links the nuclear cap-binding complex to RNA
366. Rose NR, Klose RJ: Understanding the relationship between DNA interference and cell proliferation. Cell 138:328–339, 2009. doi:
methylation and histone lysine methylation. Biochim Biophys Acta 10.1016/j.cell.2009.04.046.
1839:1362–1372, 2014. doi: 10.1016/j.bbagrm.2014.02.007. 391. Guo S, et al: MicroRNA miR-125a controls hematopoietic stem
367. Kouzarides T: Chromatin modifications and their function. Cell cell number. Proc Natl Acad Sci USA 107:14229–14234, 2010. doi:
128:693–705, 2007. doi: 10.1016/j.cell.2007.02.005. 10.1073/pnas.0913574107.
368. Cullen SM, Mayle A, Rossi L, et al: Hematopoietic stem cell develop- 392. O’Connell RM, Baltimore D: MicroRNAs and hematopoietic cell
ment: an epigenetic journey. Curr Top Dev Biol 107:39–75, 2014. doi: development. Curr Top Dev Biol 99:145–174, 2012. doi: 10.1016/
10.1016/B978-0-12-416022-4.00002-0. B978-0-12-387038-4.00006-9.
369. Jiang Y, Hatzi K, Shaknovich R: Mechanisms of epigenetic deregulation 393. Lu J, et al: MicroRNA expression profiles classify human cancers.
in lymphoid neoplasms. Blood 121:4271–4279, 2013. doi: 10.1182/ Nature 435:834–838, 2005. doi: 10.1038/nature03702.
blood-2012-12-451799. 394. Georgantas RW, 3rd, et al: CD34+ hematopoietic stem-progenitor cell
370. Mullighan CG, et al: CREBBP mutations in relapsed acute lymphoblas- microRNA expression and function: a circuit diagram of differentiation
tic leukaemia. Nature 471:235–239, 2011. doi: 10.1038/nature09727. control. Proc Natl Acad Sci USA 104:2750–2755, 2007. doi: 10.1073/
371. Ernst P, et al: Definitive hematopoiesis requires the mixed-lineage pnas.0610983104.
leukemia gene. Dev Cell 6:437–443, 2004. 395. O’Connell RM, et al: MicroRNAs enriched in hematopoietic stem cells
372. De Braekeleer M, Morel F, Le Bris MJ, et al: The MLL gene and differentially regulate long-term hematopoietic output. Proc Natl Acad
translocations involving chromosomal band 11q23 in acute leukemia. Sci USA 107:14235–14240, 2010. doi: 10.1073/pnas.1009798107.
Anticancer Res 25:1931–1944, 2005. 396. Petriv OI, et al: Comprehensive microRNA expression profiling of the
373. Garrido SM, Bryant E, Appelbaum FR: Allogeneic stem cell transplan- hematopoietic hierarchy. Proc Natl Acad Sci USA 107:15443–15448,
tation for relapsed and refractory acute myeloid leukemia patients with 2010. doi: 10.1073/pnas.1009320107.
11q23 abnormalities. Leuk Res 24:481–486, 2000. 397. Ooi AG, et al: MicroRNA-125b expands hematopoietic stem cells
374. Meyer C, et al: The MLL recombinome of acute leukemias in 2013. and enriches for the lymphoid-balanced and lymphoid-biased subsets.
Leukemia 27:2165–2176, 2013. doi: 10.1038/leu.2013.135. Proc Natl Acad Sci USA 107:21505–21510, 2010. doi: 10.1073/
375. Mohan M, Lin C, Guest E, et al: Licensed to elongate: a molecu- pnas.1016218107.
lar mechanism for MLL-based leukaemogenesis. Nat Rev Cancer 398. Han YC, et al: microRNA-29a induces aberrant self-renewal capacity
10:721–728, 2010. doi: 10.1038/nrc2915. in hematopoietic progenitors, biased myeloid development, and acute
376. Akalin A, et al: Base-pair resolution DNA methylation sequencing myeloid leukemia. J Exp Med 207:475–489, 2010. doi: 10.1084/
reveals profoundly divergent epigenetic landscapes in acute myeloid jem.20090831.
leukemia. PLoS Genet 8:e1002781, 2012. doi: 10.1371/journal. 399. Gentner B, et al: Identification of hematopoietic stem cell-specific
pgen.1002781. miRNAs enables gene therapy of globoid cell leukodystrophy. Sci Transl
377. Trowbridge JJ, et al: Haploinsufficiency of Dnmt1 impairs leukemia Med 2:58ra84, 2010. doi: 10.1126/scitranslmed.3001522.
stem cell function through derepression of bivalent chromatin domains. 400. Gerrits A, et al: Genetic screen identifies microRNA cluster 99b/
Genes Dev 26:344–349, 2012. doi: 10.1101/gad.184341.111. let-7e/125a as a regulator of primitive hematopoietic cells. Blood
378. Radulovic V, de Haan G, Klauke K: Polycomb-group proteins in hema- 119:377–387, 2012. doi: 10.1182/blood-2011-01-331686.
topoietic stem cell regulation and hematopoietic neoplasms. Leukemia 401. O’Connell RM, et al: Sustained expression of microRNA-155 in
27:523–533, 2013. doi: 10.1038/leu.2012.368. hematopoietic stem cells causes a myeloproliferative disorder. J Exp
379. Stock JK, et al: Ring1-mediated ubiquitination of H2A restrains poised Med 205:585–594, 2008. doi: 10.1084/jem.20072108.
RNA polymerase II at bivalent genes in mouse ES cells. Nat Cell Biol 402. Fazi F, et al: A minicircuitry comprised of microRNA-223 and transcrip-
9:1428–1435, 2007. doi: 10.1038/ncb1663. tion factors NFI-A and C/EBPalpha regulates human granulopoiesis.
380. Vire E, et al: The Polycomb group protein EZH2 directly controls DNA Cell 123:819–831, 2005. doi: 10.1016/j.cell.2005.09.023.
methylation. Nature 439:871–874, 2006. doi: 10.1038/nature04431. 403. Johnnidis JB, et al: Regulation of progenitor cell proliferation and
381. Kamminga LM, et al: The Polycomb group gene Ezh2 prevents granulocyte function by microRNA-223. Nature 451:1125–1129,
hematopoietic stem cell exhaustion. Blood 107:2170–2179, 2006. doi: 2008. doi: 10.1038/nature06607.
10.1182/blood-2005-09-3585. 404. Chen CZ, Li L, Lodish HF, et al: MicroRNAs modulate hematopoi-
382. Ezhkova E, et al: Ezh2 orchestrates gene expression for the stepwise etic lineage differentiation. Science 303:83–86, 2004. doi: 10.1126/
differentiation of tissue-specific stem cells. Cell 136:1122–1135, 2009. science.1091903.
doi: 10.1016/j.cell.2008.12.043. 405. Xiao C, et al: MiR-150 controls B cell differentiation by targeting the
383. Bracken AP, et al: EZH2 is downstream of the pRB-E2F pathway, essen- transcription factor c-Myb. Cell 131:146–159, 2007. doi: 10.1016/j.
tial for proliferation and amplified in cancer. EMBO J 22:5323–5335, cell.2007.07.021.
2003. doi: 10.1093/emboj/cdg542. 406. Xiao C, et al: Lymphoproliferative disease and autoimmunity in mice
384. Abdel-Wahab O, et al: Concomitant analysis of EZH2 and ASXL1 with increased miR-17-92 expression in lymphocytes. Nat Immunol
mutations in myelofibrosis, chronic myelomonocytic leukemia and 9:405–414, 2008. doi: 10.1038/ni1575.
blast-phase myeloproliferative neoplasms. Leukemia 25:1200–1202, 407. Zhou B, Wang S, Mayr C, et al: miR-150, a microRNA expressed in
2011. doi: 10.1038/leu.2011.58. mature B and T cells, blocks early B cell development when expressed

