Page 148 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 148

Chapter 9  Hematopoietic Stem Cell Biology  110.e9


            362.  Marcucci  G,  et al:  IDH1  and  IDH2  gene  mutations  identify  novel   385.  International Human Genome Sequencing C, et al: Initial sequencing
                molecular subsets within de novo cytogenetically normal acute myeloid   and analysis of the human genome. Nature 409:860–921, 2001. doi:
                leukemia:  a  Cancer  and  Leukemia  Group  B  study.  J  Clin  Oncol   10.1038/35057062.
                28:2348–2355, 2010. doi: 10.1200/JCO.2009.27.3730.  386.  Pennisi E: Genomics. ENCODE project writes eulogy for junk DNA.
            363.  Paschka  P,  et al:  IDH1  and  IDH2  mutations  are  frequent  genetic   Science 337(1159):1161, 2012. doi: 10.1126/science.337.6099.1159.
                alterations in acute myeloid leukemia and confer adverse prognosis in   387.  Klimmeck  D,  et al: Transcriptome-wide  profiling  and  posttranscrip-
                cytogenetically normal acute myeloid leukemia with NPM1 mutation   tional  analysis  of  hematopoietic  stem/progenitor  cell  differentiation
                without FLT3 internal tandem duplication. J Clin Oncol 28:3636–3643,   toward myeloid commitment. Stem Cell Reports 3:858–875, 2014. doi:
                2010. doi: 10.1200/JCO.2010.28.3762.                  10.1016/j.stemcr.2014.08.012.
            364.  Figueroa ME, et al: Leukemic IDH1 and IDH2 mutations result in   388.  Guo H, Ingolia NT, Weissman JS, et al: Mammalian microRNAs pre-
                a  hypermethylation  phenotype,  disrupt  TET2  function,  and  impair   dominantly act to decrease target mRNA levels. Nature 466:835–840,
                hematopoietic  differentiation.  Cancer  Cell  18:553–567,  2010.  doi:   2010. doi: 10.1038/nature09267.
                10.1016/j.ccr.2010.11.015.                        389.  Lim LP, et al: Microarray analysis shows that some microRNAs down-
            365.  Xu  W,  et al:  Oncometabolite  2-hydroxyglutarate  is  a  competitive   regulate large numbers of target mRNAs. Nature 433:769–773, 2005.
                inhibitor  of  alpha-ketoglutarate-dependent  dioxygenases.  Cancer  Cell   doi: 10.1038/nature03315.
                19:17–30, 2011. doi: 10.1016/j.ccr.2010.12.014.   390.  Gruber JJ, et al: Ars2 links the nuclear cap-binding complex to RNA
            366.  Rose  NR,  Klose  RJ:  Understanding  the  relationship  between  DNA   interference  and  cell  proliferation.  Cell  138:328–339,  2009.  doi:
                methylation  and  histone  lysine  methylation.  Biochim  Biophys  Acta   10.1016/j.cell.2009.04.046.
                1839:1362–1372, 2014. doi: 10.1016/j.bbagrm.2014.02.007.  391.  Guo  S,  et al:  MicroRNA  miR-125a  controls  hematopoietic  stem
            367.  Kouzarides  T:  Chromatin  modifications  and  their  function.  Cell   cell  number. Proc  Natl Acad  Sci  USA 107:14229–14234, 2010.  doi:
                128:693–705, 2007. doi: 10.1016/j.cell.2007.02.005.   10.1073/pnas.0913574107.
            368.  Cullen SM, Mayle A, Rossi L, et al: Hematopoietic stem cell develop-  392.  O’Connell  RM,  Baltimore  D:  MicroRNAs  and  hematopoietic  cell
                ment: an epigenetic journey. Curr Top Dev Biol 107:39–75, 2014. doi:   development.  Curr  Top  Dev  Biol  99:145–174,  2012.  doi:  10.1016/
                10.1016/B978-0-12-416022-4.00002-0.                   B978-0-12-387038-4.00006-9.
            369.  Jiang Y, Hatzi K, Shaknovich R: Mechanisms of epigenetic deregulation   393.  Lu  J,  et al:  MicroRNA  expression  profiles  classify  human  cancers.
                in lymphoid neoplasms. Blood 121:4271–4279, 2013. doi: 10.1182/  Nature 435:834–838, 2005. doi: 10.1038/nature03702.
                blood-2012-12-451799.                             394.  Georgantas RW, 3rd, et al: CD34+ hematopoietic stem-progenitor cell
            370.  Mullighan CG, et al: CREBBP mutations in relapsed acute lymphoblas-  microRNA expression and function: a circuit diagram of differentiation
                tic leukaemia. Nature 471:235–239, 2011. doi: 10.1038/nature09727.  control. Proc Natl Acad Sci USA 104:2750–2755, 2007. doi: 10.1073/
            371.  Ernst  P,  et al:  Definitive  hematopoiesis  requires  the  mixed-lineage   pnas.0610983104.
                leukemia gene. Dev Cell 6:437–443, 2004.          395.  O’Connell RM, et al: MicroRNAs enriched in hematopoietic stem cells
            372.  De  Braekeleer  M,  Morel  F,  Le  Bris  MJ,  et al:  The  MLL  gene  and   differentially regulate long-term hematopoietic output. Proc Natl Acad
                translocations involving chromosomal band 11q23 in acute leukemia.   Sci USA 107:14235–14240, 2010. doi: 10.1073/pnas.1009798107.
                Anticancer Res 25:1931–1944, 2005.                396.  Petriv OI, et al: Comprehensive microRNA expression profiling of the
            373.  Garrido SM, Bryant E, Appelbaum FR: Allogeneic stem cell transplan-  hematopoietic hierarchy. Proc Natl Acad Sci USA 107:15443–15448,
                tation for relapsed and refractory acute myeloid leukemia patients with   2010. doi: 10.1073/pnas.1009320107.
                11q23 abnormalities. Leuk Res 24:481–486, 2000.   397.  Ooi  AG,  et al:  MicroRNA-125b  expands  hematopoietic  stem  cells
            374.  Meyer C, et al: The MLL recombinome of acute leukemias in 2013.   and enriches for the lymphoid-balanced and lymphoid-biased subsets.
                Leukemia 27:2165–2176, 2013. doi: 10.1038/leu.2013.135.  Proc  Natl  Acad  Sci  USA  107:21505–21510,  2010.  doi:  10.1073/
            375.  Mohan  M,  Lin  C,  Guest  E,  et al:  Licensed  to  elongate:  a  molecu-  pnas.1016218107.
                lar  mechanism  for  MLL-based  leukaemogenesis.  Nat  Rev  Cancer   398.  Han YC, et al: microRNA-29a induces aberrant self-renewal capacity
                10:721–728, 2010. doi: 10.1038/nrc2915.               in hematopoietic progenitors, biased myeloid development, and acute
            376.  Akalin  A,  et al:  Base-pair  resolution  DNA  methylation  sequencing   myeloid  leukemia.  J  Exp  Med  207:475–489,  2010.  doi:  10.1084/
                reveals  profoundly  divergent  epigenetic  landscapes  in  acute  myeloid   jem.20090831.
                leukemia.  PLoS  Genet  8:e1002781,  2012.  doi:  10.1371/journal.  399.  Gentner  B,  et al:  Identification  of  hematopoietic  stem  cell-specific
                pgen.1002781.                                         miRNAs enables gene therapy of globoid cell leukodystrophy. Sci Transl
            377.  Trowbridge  JJ,  et al:  Haploinsufficiency  of  Dnmt1  impairs  leukemia   Med 2:58ra84, 2010. doi: 10.1126/scitranslmed.3001522.
                stem cell function through derepression of bivalent chromatin domains.   400.  Gerrits  A,  et al:  Genetic  screen  identifies  microRNA  cluster  99b/
                Genes Dev 26:344–349, 2012. doi: 10.1101/gad.184341.111.  let-7e/125a  as  a  regulator  of  primitive  hematopoietic  cells.  Blood
            378.  Radulovic V, de Haan G, Klauke K: Polycomb-group proteins in hema-  119:377–387, 2012. doi: 10.1182/blood-2011-01-331686.
                topoietic stem cell regulation and hematopoietic neoplasms. Leukemia   401.  O’Connell  RM,  et al:  Sustained  expression  of  microRNA-155  in
                27:523–533, 2013. doi: 10.1038/leu.2012.368.          hematopoietic  stem  cells  causes  a  myeloproliferative  disorder.  J  Exp
            379.  Stock JK, et al: Ring1-mediated ubiquitination of H2A restrains poised   Med 205:585–594, 2008. doi: 10.1084/jem.20072108.
                RNA polymerase II at bivalent genes in mouse ES cells. Nat Cell Biol   402.  Fazi F, et al: A minicircuitry comprised of microRNA-223 and transcrip-
                9:1428–1435, 2007. doi: 10.1038/ncb1663.              tion factors NFI-A and C/EBPalpha regulates human granulopoiesis.
            380.  Vire E, et al: The Polycomb group protein EZH2 directly controls DNA   Cell 123:819–831, 2005. doi: 10.1016/j.cell.2005.09.023.
                methylation. Nature 439:871–874, 2006. doi: 10.1038/nature04431.  403.  Johnnidis  JB,  et al:  Regulation  of  progenitor  cell  proliferation  and
            381.  Kamminga  LM,  et al:  The  Polycomb  group  gene  Ezh2  prevents   granulocyte  function  by  microRNA-223.  Nature  451:1125–1129,
                hematopoietic stem cell exhaustion. Blood 107:2170–2179, 2006. doi:   2008. doi: 10.1038/nature06607.
                10.1182/blood-2005-09-3585.                       404.  Chen CZ, Li L, Lodish HF, et al: MicroRNAs modulate hematopoi-
            382.  Ezhkova  E,  et al:  Ezh2  orchestrates  gene  expression  for  the  stepwise   etic  lineage  differentiation.  Science  303:83–86,  2004.  doi:  10.1126/
                differentiation of tissue-specific stem cells. Cell 136:1122–1135, 2009.   science.1091903.
                doi: 10.1016/j.cell.2008.12.043.                  405.  Xiao C, et al: MiR-150 controls B cell differentiation by targeting the
            383.  Bracken AP, et al: EZH2 is downstream of the pRB-E2F pathway, essen-  transcription factor c-Myb. Cell 131:146–159, 2007. doi: 10.1016/j.
                tial for proliferation and amplified in cancer. EMBO J 22:5323–5335,   cell.2007.07.021.
                2003. doi: 10.1093/emboj/cdg542.                  406.  Xiao C, et al: Lymphoproliferative disease and autoimmunity in mice
            384.  Abdel-Wahab  O,  et al:  Concomitant  analysis  of  EZH2  and  ASXL1   with  increased  miR-17-92  expression  in  lymphocytes.  Nat  Immunol
                mutations  in  myelofibrosis,  chronic  myelomonocytic  leukemia  and   9:405–414, 2008. doi: 10.1038/ni1575.
                blast-phase  myeloproliferative  neoplasms.  Leukemia  25:1200–1202,   407.  Zhou B, Wang S, Mayr C, et al: miR-150, a microRNA expressed in
                2011. doi: 10.1038/leu.2011.58.                       mature B and T cells, blocks early B cell development when expressed
   143   144   145   146   147   148   149   150   151   152   153