Page 149 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 149

110.e10  Part II  Cellular Basis of Hematology


            prematurely.  Proc  Natl  Acad  Sci  USA  104:7080–7085,  2007.  doi:   428.  Luo  M,  et al:  Long  non-coding  RNAs  control  hematopoietic  stem
            10.1073/pnas.0702409104.                              cell  function.  Cell  Stem  Cell  16:426–438,  2015.  doi:  10.1016/j.
        408.  Arnold CP, et al: MicroRNA programs in normal and aberrant stem   stem.2015.02.002.
            and  progenitor  cells.  Genome  Res  21:798–810,  2011.  doi:  10.1101/  429.  Yildirim E, et al: Xist RNA is a potent suppressor of hematologic cancer
            gr.111385.110.                                        in mice. Cell 152:727–742, 2013. doi: 10.1016/j.cell.2013.01.034.
        409.  Lazare  SS,  Wojtowicz  EE,  Bystrykh  LV,  et al:  microRNAs  in   430.  Wang YH, et al: Cell-state-specific metabolic dependency in hemato-
            hematopoiesis.  Exp  Cell  Res  329:234–238,  2014.  doi:  10.1016/j.  poiesis and leukemogenesis. Cell 158:1309–1323, 2014. doi: 10.1016/j.
            yexcr.2014.08.033.                                    cell.2014.07.048.
        410.  Chaudhuri AA, et al: Oncomir miR-125b regulates hematopoiesis by   431.  Ito K, et al: A PML-PPAR-delta pathway for fatty acid oxidation regu-
            targeting the gene Lin28A. Proc Natl Acad Sci USA 109:4233–4238,   lates  hematopoietic  stem  cell  maintenance.  Nat  Med  18:1350–1358,
            2012. doi: 10.1073/pnas.1200677109.                   2012. doi: 10.1038/nm.2882.
        411.  Bousquet M, Harris MH, Zhou B, et al: MicroRNA miR-125b causes   432.  Gurumurthy S, et al: The Lkb1 metabolic sensor maintains haemato-
            leukemia.  Proc  Natl  Acad  Sci  USA  107:21558–21563,  2010.  doi:   poietic stem cell survival. Nature 468:659–663, 2010. doi: 10.1038/
            10.1073/pnas.1016611107.                              nature09572.
        412.  Bousquet M, et al: Myeloid cell differentiation arrest by miR-125b-1   433.  Spencer JA, et al: Direct measurement of local oxygen concentration
            in  myelodysplastic  syndrome  and  acute  myeloid  leukemia  with  the   in the bone marrow of live animals. Nature 508:269–273, 2014. doi:
            t(2;11)(p21;q23) translocation. J Exp Med 205:2499–2506, 2008. doi:   10.1038/nature13034.
            10.1084/jem.20080285.                             434.  Ito  K,  Suda T:  Metabolic  requirements  for  the  maintenance  of  self-
        413.  Chapiro  E,  et al:  A  new  recurrent  translocation  t(11;14)(q24;q32)   renewing  stem  cells.  Nat  Rev  Mol  Cell  Biol  15:243–256,  2014.  doi:
            involving  IGH@  and  miR-125b-1  in  B-cell  progenitor  acute  lym-  10.1038/nrm3772.
            phoblastic  leukemia.  Leukemia  24:1362–1364,  2010.  doi:  10.1038/  435.  Simsek T, et al: The distinct metabolic profile of hematopoietic stem
            leu.2010.93.                                          cells reflects their location in a hypoxic niche. Cell Stem Cell 7:380–390,
        414.  Sonoki T, Iwanaga E, Mitsuya H, et al: Insertion of microRNA-125b-1,   2010. doi: 10.1016/j.stem.2010.07.011.
            a  human  homologue  of  lin-4,  into  a  rearranged  immunoglobulin   436.  Suda T: Hematopoiesis and bone remodeling. Blood 117:5556–5557,
            heavy chain gene locus in a patient with precursor B-cell acute lym-  2011. doi: 10.1182/blood-2011-03-344127.
            phoblastic  leukemia.  Leukemia  19:2009–2010,  2005.  doi:  10.1038/  437.  Liu X, et al: Maintenance of mouse hematopoietic stem cells ex vivo
            sj.leu.2403938.                                       by reprogramming cellular metabolism. Blood 125:1562–1565, 2015.
        415.  Song  SJ,  et al: The  oncogenic  microRNA  miR-22  targets  the TET2   doi: 10.1182/blood-2014-04-568949.
            tumor  suppressor  to  promote  hematopoietic  stem  cell  self-renewal   438.  Mohrin  M,  et al:  Stem  cell  aging.  A  mitochondrial  UPR-mediated
            and transformation. Cell Stem Cell 13:87–101, 2013. doi: 10.1016/j.  metabolic checkpoint regulates hematopoietic stem cell aging. Science
            stem.2013.06.003.                                     347:1374–1377, 2015. doi: 10.1126/science.aaa2361.
        416.  Costinean S, et al: Pre-B cell proliferation and lymphoblastic leukemia/  439.  Bowie MB, Kent DG, Copley MR, et al: Steel factor responsiveness
            high-grade  lymphoma  in  E(mu)-miR155  transgenic  mice.  Proc  Natl   regulates the high self-renewal phenotype of fetal hematopoietic stem
            Acad Sci USA 103:7024–7029, 2006. doi: 10.1073/pnas.0602266103.  cells.  Blood  109:5043–5048,  2007.  doi:  10.1182/blood-2006-08-
        417.  Kluiver J, et al: BIC and miR-155 are highly expressed in Hodgkin,   037770.
            primary  mediastinal  and  diffuse  large  B  cell  lymphomas.  J  Pathol   440.  Petit-Cocault L, Volle-Challier C, Fleury M, et al: Dual role of Mpl
            207:243–249, 2005. doi: 10.1002/path.1825.            receptor during the establishment of definitive hematopoiesis. Develop-
        418.  Garzon R, et al: MicroRNA signatures associated with cytogenetics and   ment 134:3031–3040, 2007. doi: 10.1242/dev.001818.
            prognosis in acute myeloid leukemia. Blood 111:3183–3189, 2008. doi:   441.  Zhang CC, et al: Angiopoietin-like proteins stimulate ex vivo expan-
            10.1182/blood-2007-07-098749.                         sion  of  hematopoietic  stem  cells.  Nat  Med  12:240–245,  2006.  doi:
        419.  Whitman SP, et al: FLT3 internal tandem duplication associates with   10.1038/nm1342.
            adverse  outcome  and  gene-  and  microRNA-expression  signatures  in   442.  Zhang CC, Kaba M, Iizuka S, et al: Angiopoietin-like 5 and IGFBP2
            patients 60 years of age or older with primary cytogenetically normal   stimulate ex vivo expansion of human cord blood hematopoietic stem
            acute myeloid leukemia: a Cancer and Leukemia Group B study. Blood   cells as assayed by NOD/SCID transplantation. Blood 111:3415–3423,
            116:3622–3626, 2010. doi: 10.1182/blood-2010-05-283648.  2008. doi: 10.1182/blood-2007-11-122119.
        420.  Lawrence  HJ,  et al:  Loss  of  expression  of  the  Hoxa-9  homeobox   443.  Zheng J, et al: Inhibitory receptors bind ANGPTLs and support blood
            gene  impairs  the  proliferation  and  repopulating  ability  of  hemato-  stem  cells  and  leukaemia  development.  Nature  485:656–660,  2012.
            poietic  stem  cells.  Blood  106:3988–3994,  2005.  doi:  10.1182/  doi: 10.1038/nature11095.
            blood-2005-05-2003.                               444.  Lin MI, et al: Angiopoietin-like proteins stimulate HSPC development
        421.  Thorsteinsdottir  U,  et al:  Overexpression  of  the  myeloid  leukemia-  through interaction with notch receptor signaling. Elife 4:2015. doi:
            associated Hoxa9 gene in bone marrow cells induces stem cell expan-  10.7554/eLife.05544.
            sion. Blood 99:121–129, 2002.                     445.  North TE, et al: Prostaglandin E2 regulates vertebrate haematopoietic
        422.  Li  Z,  et al:  miR-196b  directly  targets  both  HOXA9/MEIS1  onco-  stem  cell  homeostasis.  Nature  447:1007–1011,  2007.  doi:  10.1038/
            genes and FAS tumour suppressor in MLL-rearranged leukaemia. Nat   nature05883.
            Commun 3:688, 2012. doi: 10.1038/ncomms1681.      446.  Goessling W,  et al:  Genetic  interaction  of  PGE2  and Wnt  signaling
        423.  Yekta S, Shih IH, Bartel DP: MicroRNA-directed cleavage of HOXB8   regulates  developmental  specification  of  stem  cells  and  regeneration.
            mRNA. Science 304:594–596, 2004. doi: 10.1126/science.1097434.  Cell 136:1136–1147, 2009. doi: 10.1016/j.cell.2009.01.015.
        424.  Popovic R, et al: Regulation of mir-196b by MLL and its overexpression   447.  Hoggatt  J,  Singh  P,  Sampath  J,  et al:  Prostaglandin  E2  enhances
            by MLL fusions contributes to immortalization. Blood 113:3314–3322,   hematopoietic  stem  cell  homing,  survival,  and  proliferation.  Blood
            2009. doi: 10.1182/blood-2008-04-154310.              113:5444–5455, 2009. doi: 10.1182/blood-2009-01-201335.
        425.  Calin  GA,  et al:  Frequent  deletions  and  down-regulation  of  micro-   448.  Goessling W, et al: Prostaglandin E2 enhances human cord blood stem
            RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leu-  cell xenotransplants and shows long-term safety in preclinical nonhu-
            kemia. Proc Natl Acad Sci USA 99:15524–15529, 2002. doi: 10.1073/  man primate transplant models. Cell Stem Cell 8:445–458, 2011. doi:
            pnas.242606799.                                       10.1016/j.stem.2011.02.003.
        426.  Cimmino A, et al: miR-15 and miR-16 induce apoptosis by targeting   449.  Cutler C, et al: Prostaglandin-modulated umbilical cord blood hema-
            BCL2. Proc Natl Acad Sci USA 102:13944–13949, 2005. doi: 10.1073/  topoietic stem cell transplantation. Blood 122:3074–3081, 2013. doi:
            pnas.0506654102.                                      10.1182/blood-2013-05-503177.
        427.  Yan  X,  et al:  Comprehensive  genomic  characterization  of  long  non-  450.  Chute JP, Muramoto G, Fung J, et al: Quantitative analysis demon-
            coding RNAs across human cancers. Cancer Cell 28:529–540, 2015.   strates expansion of SCID-repopulating cells and increased engraftment
            doi: 10.1016/j.ccell.2015.09.006.                     capacity in human cord blood following ex vivo culture with human
   144   145   146   147   148   149   150   151   152   153   154