Page 149 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 149
110.e10 Part II Cellular Basis of Hematology
prematurely. Proc Natl Acad Sci USA 104:7080–7085, 2007. doi: 428. Luo M, et al: Long non-coding RNAs control hematopoietic stem
10.1073/pnas.0702409104. cell function. Cell Stem Cell 16:426–438, 2015. doi: 10.1016/j.
408. Arnold CP, et al: MicroRNA programs in normal and aberrant stem stem.2015.02.002.
and progenitor cells. Genome Res 21:798–810, 2011. doi: 10.1101/ 429. Yildirim E, et al: Xist RNA is a potent suppressor of hematologic cancer
gr.111385.110. in mice. Cell 152:727–742, 2013. doi: 10.1016/j.cell.2013.01.034.
409. Lazare SS, Wojtowicz EE, Bystrykh LV, et al: microRNAs in 430. Wang YH, et al: Cell-state-specific metabolic dependency in hemato-
hematopoiesis. Exp Cell Res 329:234–238, 2014. doi: 10.1016/j. poiesis and leukemogenesis. Cell 158:1309–1323, 2014. doi: 10.1016/j.
yexcr.2014.08.033. cell.2014.07.048.
410. Chaudhuri AA, et al: Oncomir miR-125b regulates hematopoiesis by 431. Ito K, et al: A PML-PPAR-delta pathway for fatty acid oxidation regu-
targeting the gene Lin28A. Proc Natl Acad Sci USA 109:4233–4238, lates hematopoietic stem cell maintenance. Nat Med 18:1350–1358,
2012. doi: 10.1073/pnas.1200677109. 2012. doi: 10.1038/nm.2882.
411. Bousquet M, Harris MH, Zhou B, et al: MicroRNA miR-125b causes 432. Gurumurthy S, et al: The Lkb1 metabolic sensor maintains haemato-
leukemia. Proc Natl Acad Sci USA 107:21558–21563, 2010. doi: poietic stem cell survival. Nature 468:659–663, 2010. doi: 10.1038/
10.1073/pnas.1016611107. nature09572.
412. Bousquet M, et al: Myeloid cell differentiation arrest by miR-125b-1 433. Spencer JA, et al: Direct measurement of local oxygen concentration
in myelodysplastic syndrome and acute myeloid leukemia with the in the bone marrow of live animals. Nature 508:269–273, 2014. doi:
t(2;11)(p21;q23) translocation. J Exp Med 205:2499–2506, 2008. doi: 10.1038/nature13034.
10.1084/jem.20080285. 434. Ito K, Suda T: Metabolic requirements for the maintenance of self-
413. Chapiro E, et al: A new recurrent translocation t(11;14)(q24;q32) renewing stem cells. Nat Rev Mol Cell Biol 15:243–256, 2014. doi:
involving IGH@ and miR-125b-1 in B-cell progenitor acute lym- 10.1038/nrm3772.
phoblastic leukemia. Leukemia 24:1362–1364, 2010. doi: 10.1038/ 435. Simsek T, et al: The distinct metabolic profile of hematopoietic stem
leu.2010.93. cells reflects their location in a hypoxic niche. Cell Stem Cell 7:380–390,
414. Sonoki T, Iwanaga E, Mitsuya H, et al: Insertion of microRNA-125b-1, 2010. doi: 10.1016/j.stem.2010.07.011.
a human homologue of lin-4, into a rearranged immunoglobulin 436. Suda T: Hematopoiesis and bone remodeling. Blood 117:5556–5557,
heavy chain gene locus in a patient with precursor B-cell acute lym- 2011. doi: 10.1182/blood-2011-03-344127.
phoblastic leukemia. Leukemia 19:2009–2010, 2005. doi: 10.1038/ 437. Liu X, et al: Maintenance of mouse hematopoietic stem cells ex vivo
sj.leu.2403938. by reprogramming cellular metabolism. Blood 125:1562–1565, 2015.
415. Song SJ, et al: The oncogenic microRNA miR-22 targets the TET2 doi: 10.1182/blood-2014-04-568949.
tumor suppressor to promote hematopoietic stem cell self-renewal 438. Mohrin M, et al: Stem cell aging. A mitochondrial UPR-mediated
and transformation. Cell Stem Cell 13:87–101, 2013. doi: 10.1016/j. metabolic checkpoint regulates hematopoietic stem cell aging. Science
stem.2013.06.003. 347:1374–1377, 2015. doi: 10.1126/science.aaa2361.
416. Costinean S, et al: Pre-B cell proliferation and lymphoblastic leukemia/ 439. Bowie MB, Kent DG, Copley MR, et al: Steel factor responsiveness
high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl regulates the high self-renewal phenotype of fetal hematopoietic stem
Acad Sci USA 103:7024–7029, 2006. doi: 10.1073/pnas.0602266103. cells. Blood 109:5043–5048, 2007. doi: 10.1182/blood-2006-08-
417. Kluiver J, et al: BIC and miR-155 are highly expressed in Hodgkin, 037770.
primary mediastinal and diffuse large B cell lymphomas. J Pathol 440. Petit-Cocault L, Volle-Challier C, Fleury M, et al: Dual role of Mpl
207:243–249, 2005. doi: 10.1002/path.1825. receptor during the establishment of definitive hematopoiesis. Develop-
418. Garzon R, et al: MicroRNA signatures associated with cytogenetics and ment 134:3031–3040, 2007. doi: 10.1242/dev.001818.
prognosis in acute myeloid leukemia. Blood 111:3183–3189, 2008. doi: 441. Zhang CC, et al: Angiopoietin-like proteins stimulate ex vivo expan-
10.1182/blood-2007-07-098749. sion of hematopoietic stem cells. Nat Med 12:240–245, 2006. doi:
419. Whitman SP, et al: FLT3 internal tandem duplication associates with 10.1038/nm1342.
adverse outcome and gene- and microRNA-expression signatures in 442. Zhang CC, Kaba M, Iizuka S, et al: Angiopoietin-like 5 and IGFBP2
patients 60 years of age or older with primary cytogenetically normal stimulate ex vivo expansion of human cord blood hematopoietic stem
acute myeloid leukemia: a Cancer and Leukemia Group B study. Blood cells as assayed by NOD/SCID transplantation. Blood 111:3415–3423,
116:3622–3626, 2010. doi: 10.1182/blood-2010-05-283648. 2008. doi: 10.1182/blood-2007-11-122119.
420. Lawrence HJ, et al: Loss of expression of the Hoxa-9 homeobox 443. Zheng J, et al: Inhibitory receptors bind ANGPTLs and support blood
gene impairs the proliferation and repopulating ability of hemato- stem cells and leukaemia development. Nature 485:656–660, 2012.
poietic stem cells. Blood 106:3988–3994, 2005. doi: 10.1182/ doi: 10.1038/nature11095.
blood-2005-05-2003. 444. Lin MI, et al: Angiopoietin-like proteins stimulate HSPC development
421. Thorsteinsdottir U, et al: Overexpression of the myeloid leukemia- through interaction with notch receptor signaling. Elife 4:2015. doi:
associated Hoxa9 gene in bone marrow cells induces stem cell expan- 10.7554/eLife.05544.
sion. Blood 99:121–129, 2002. 445. North TE, et al: Prostaglandin E2 regulates vertebrate haematopoietic
422. Li Z, et al: miR-196b directly targets both HOXA9/MEIS1 onco- stem cell homeostasis. Nature 447:1007–1011, 2007. doi: 10.1038/
genes and FAS tumour suppressor in MLL-rearranged leukaemia. Nat nature05883.
Commun 3:688, 2012. doi: 10.1038/ncomms1681. 446. Goessling W, et al: Genetic interaction of PGE2 and Wnt signaling
423. Yekta S, Shih IH, Bartel DP: MicroRNA-directed cleavage of HOXB8 regulates developmental specification of stem cells and regeneration.
mRNA. Science 304:594–596, 2004. doi: 10.1126/science.1097434. Cell 136:1136–1147, 2009. doi: 10.1016/j.cell.2009.01.015.
424. Popovic R, et al: Regulation of mir-196b by MLL and its overexpression 447. Hoggatt J, Singh P, Sampath J, et al: Prostaglandin E2 enhances
by MLL fusions contributes to immortalization. Blood 113:3314–3322, hematopoietic stem cell homing, survival, and proliferation. Blood
2009. doi: 10.1182/blood-2008-04-154310. 113:5444–5455, 2009. doi: 10.1182/blood-2009-01-201335.
425. Calin GA, et al: Frequent deletions and down-regulation of micro- 448. Goessling W, et al: Prostaglandin E2 enhances human cord blood stem
RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leu- cell xenotransplants and shows long-term safety in preclinical nonhu-
kemia. Proc Natl Acad Sci USA 99:15524–15529, 2002. doi: 10.1073/ man primate transplant models. Cell Stem Cell 8:445–458, 2011. doi:
pnas.242606799. 10.1016/j.stem.2011.02.003.
426. Cimmino A, et al: miR-15 and miR-16 induce apoptosis by targeting 449. Cutler C, et al: Prostaglandin-modulated umbilical cord blood hema-
BCL2. Proc Natl Acad Sci USA 102:13944–13949, 2005. doi: 10.1073/ topoietic stem cell transplantation. Blood 122:3074–3081, 2013. doi:
pnas.0506654102. 10.1182/blood-2013-05-503177.
427. Yan X, et al: Comprehensive genomic characterization of long non- 450. Chute JP, Muramoto G, Fung J, et al: Quantitative analysis demon-
coding RNAs across human cancers. Cancer Cell 28:529–540, 2015. strates expansion of SCID-repopulating cells and increased engraftment
doi: 10.1016/j.ccell.2015.09.006. capacity in human cord blood following ex vivo culture with human

