Page 150 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 150

Chapter 9  Hematopoietic Stem Cell Biology  110.e11


                brain  endothelial  cells.  Stem  Cells  22:202–215,  2004.  doi:  10.1634/  472.  Ackermann M, Liebhaber S, Klusmann JH, et al: Lost in translation:
                stemcells.22-2-202.                                   pluripotent  stem  cell-derived  hematopoiesis.  EMBO  Mol  Med  2015.
            451.  Chute JP, et al: Molecular profile and partial functional analysis of novel   doi: 10.15252/emmm.201505301.
                endothelial  cell-derived  growth  factors  that  regulate  hematopoiesis.   473.  Walasek MA, van Os R, de Haan G: Hematopoietic stem cell expan-
                Stem Cells 24:1315–1327, 2006. doi: 10.1634/stemcells.2005-0029.  sion: challenges and opportunities. Ann N Y Acad Sci 1266:138–150,
            452.  Chute JP, Muramoto GG, Fung J, et al: Soluble factors elaborated by   2012. doi: 10.1111/j.1749-6632.2012.06549.x.
                human  brain  endothelial  cells  induce  the  concomitant  expansion  of   474.  Gao  Y,  et al:  Small-molecule  inhibitors  targeting  INK4  protein
                purified human BM CD34+CD38- cells and SCID-repopulating cells.   p18(INK4C) enhance ex vivo expansion of haematopoietic stem cells.
                Blood 105:576–583, 2005. doi: 10.1182/blood-2004-04-1467.  Nat Commun 6:6328, 2015. doi: 10.1038/ncomms7328.
            453.  Chute  JP,  et al:  Ex  vivo  culture  with  human  brain  endothelial  cells   475.  Evans MJ, Kaufman MH: Establishment in culture of pluripotential
                increases the SCID-repopulating capacity of adult human bone marrow.   cells from mouse embryos. Nature 292:154–156, 1981.
                Blood 100:4433–4439, 2002. doi: 10.1182/blood-2002-04-1238.  476.  Martin  GR:  Isolation  of  a  pluripotent  cell  line  from  early  mouse
            454.  Himburg  HA,  et al:  Pleiotrophin  regulates  the  retention  and  self-  embryos  cultured  in  medium  conditioned  by  teratocarcinoma  stem
                renewal of hematopoietic stem cells in the bone marrow vascular niche.   cells. Proc Natl Acad Sci USA 78:7634–7638, 1981.
                Cell Rep 2:964–975, 2012. doi: 10.1016/j.celrep.2012.09.002.  477.  Thomson  JA,  et al:  Embryonic  stem  cell  lines  derived  from  human
            455.  Istvanffy R, et al: Stromal pleiotrophin regulates repopulation behavior   blastocysts. Science 282:1145–1147, 1998.
                of hematopoietic stem cells. Blood 118:2712–2722, 2011. doi: 10.1182/  478.  Takahashi  K,  et al:  Induction  of  pluripotent  stem  cells  from  adult
                blood-2010-05-287235.                                 human  fibroblasts  by  defined  factors.  Cell  131:861–872,  2007.  doi:
            456.  Boitano AE, et al: Aryl hydrocarbon receptor antagonists promote the   10.1016/j.cell.2007.11.019.
                expansion of human hematopoietic stem cells. Science 329:1345–1348,   479.  Takahashi  K, Yamanaka  S:  Induction  of  pluripotent  stem  cells  from
                2010. doi: 10.1126/science.1191536.                   mouse embryonic and adult fibroblast cultures by defined factors. Cell
            457.  Dahlberg A, Brashem-Stein C, Delaney C, et al: Enhanced generation   126:663–676, 2006. doi: 10.1016/j.cell.2006.07.024.
                of cord blood hematopoietic stem and progenitor cells by culture with   480.  Kimbrel EA, Lanza R: Current status of pluripotent stem cells: moving
                StemRegenin1  and  Delta1(Ext-IgG.  Leukemia  28:2097–2101,  2014.   the first therapies to the clinic. Nat Rev Drug Discov 2015. doi: 10.1038/
                doi: 10.1038/leu.2014.181.                            nrd4738.
            458.  Wagner JE, et al: Safety and Exploratory Efficacy Of Ex Vivo Expanded   481.  Hotta  A,  Yamanaka  S:  From  Genomics  to  Gene  Therapy:  induced
                Umbilical  Cord  Blood  (UCB)  Hematopoietic  Stem  and  Progenitor   Pluripotent Stem Cells Meet Genome Editing. Annu Rev Genet 2015.
                Cells  (HSPC)  Using  Cytokines  and  Stem-Regenin  1  (SR1):  Interim   doi: 10.1146/annurev-genet-112414-054926.
                Results  Of  a  Phase  1/2  Dose  Escalation  Clinical  Study.  Blood  122:  482.  Hussein  SM,  Nagy  AA:  Progress  made  in  the  reprogramming  field:
                2013.                                                 new factors, new strategies and a new outlook. Curr Opin Genet Dev
            459.  Oostendorp  RA,  et al:  Stromal  cell  lines  from  mouse  aorta-gonads-  22:435–443, 2012. doi: 10.1016/j.gde.2012.08.007.
                mesonephros subregions are potent supporters of hematopoietic stem   483.  Doulatov S, et al: Induction of multipotential hematopoietic progeni-
                cell activity. Blood 99:1183–1189, 2002.              tors from human pluripotent stem cells via respecification of lineage-
            460.  Wohrer S, et al: Distinct stromal cell factor combinations can separately   restricted precursors. Cell Stem Cell 13:459–470, 2013. doi: 10.1016/j.
                control hematopoietic stem cell survival, proliferation, and self-renewal.   stem.2013.09.002.
                Cell Rep 7:1956–1967, 2014. doi: 10.1016/j.celrep.2014.05.014.  484.  Keller  G:  Embryonic  stem  cell  differentiation:  emergence  of  a  new
            461.  Fares  I,  et al:  Cord  blood  expansion.  Pyrimidoindole  derivatives   era  in  biology  and  medicine.  Genes  Dev  19:1129–1155,  2005.  doi:
                are  agonists  of  human  hematopoietic  stem  cell  self-renewal.  Science   10.1101/gad.1303605.
                345:1509–1512, 2014. doi: 10.1126/science.1256337.  485.  Davis RL, Weintraub H, Lassar AB: Expression of a single transfected
            462.  Jaroscak J, et al: Augmentation of umbilical cord blood (UCB) trans-  cDNA converts fibroblasts to myoblasts. Cell 51:987–1000, 1987.
                plantation with ex vivo-expanded UCB cells: results of a phase 1 trial   486.  Pulecio J, et al: Conversion of human fibroblasts into monocyte-like pro-
                using the AastromReplicell System. Blood 101:5061–5067, 2003. doi:   genitor cells. Stem Cells 32:2923–2938, 2014. doi: 10.1002/stem.1800.
                10.1182/blood-2001-12-0290.                       487.  Szabo  E,  et al:  Direct  conversion  of  human  fibroblasts  to  multilin-
            463.  Shpall EJ, et al: Transplantation of ex vivo expanded cord blood. Biol   eage  blood  progenitors.  Nature  468:521–526,  2010.  doi:  10.1038/
                Blood Marrow Transplant 8:368–376, 2002.              nature09591.
            464.  Peled T, et al: Cellular copper content modulates differentiation and   488.  Pereira CF, et al: Induction of a hemogenic program in mouse fibroblasts.
                self-renewal  in  cultures  of  cord  blood-derived  CD34+  cells.  Br  J   Cell Stem Cell 13:205–218, 2013. doi: 10.1016/j.stem.2013.05.024.
                Haematol 116:655–661, 2002.                       489.  Sandler VM, et al: Reprogramming human endothelial cells to haema-
            465.  Peled  T,  et al:  Linear  polyamine  copper  chelator  tetraethyl-  topoietic cells requires vascular induction. Nature 511:312–318, 2014.
                enepentamine augments long-term ex vivo expansion of cord blood-  doi: 10.1038/nature13547.
                derived  CD34+  cells  and  increases  their  engraftment  potential  in   490.  Riddell  J,  et al:  Reprogramming  committed  murine  blood  cells  to
                NOD/SCID  mice.  Exp  Hematol  32:547–555,  2004.  doi:  10.1016/  induced hematopoietic stem cells with defined factors. Cell 157:549–
                j.exphem.2004.03.002.                                 564, 2014. doi: 10.1016/j.cell.2014.04.006.
            466.  Peled T, et al: Chelatable cellular copper modulates differentiation and   491.  Lucas D, Frenette PS: Stem cells: reprogramming finds its niche. Nature
                self-renewal of cord blood-derived hematopoietic progenitor cells. Exp   511:301–302, 2014. doi: 10.1038/nature13516.
                Hematol 33:1092–1100, 2005. doi: 10.1016/j.exphem.2005.06.015.  492.  Trompouki E, et al: Lineage regulators direct BMP and Wnt pathways
            467.  de  Lima  M,  et al:  Transplantation  of  ex  vivo  expanded  cord  blood   to cell-specific programs during differentiation and regeneration. Cell
                cells  using  the  copper  chelator  tetraethylenepentamine:  a  phase  I/II   147:577–589, 2011. doi: 10.1016/j.cell.2011.09.044.
                clinical trial. Bone Marrow Transpl 41:771–778, 2008. doi: 10.1038/  493.  Congdon  KL,  et al:  Activation  of  Wnt  signaling  in  hematopoietic
                sj.bmt.1705979.                                       regeneration.  Stem  Cells  26:1202–1210,  2008.  doi:  10.1634/
            468.  de Lima M, et al: Cord-blood engraftment with ex vivo mesenchymal-  stemcells.2007-0768.
                cell  coculture.  N  Engl  J  Med  367:2305–2315,  2012.  doi:  10.1056/  494.  Heissig  B,  et al:  The  plasminogen  fibrinolytic  pathway  is  required
                NEJMoa1207285.                                        for hematopoietic regeneration. Cell Stem Cell 1:658–670, 2007. doi:
            469.  Horwitz  ME,  et al:  Umbilical  cord  blood  expansion  with  nicotin-  10.1016/j.stem.2007.10.012.
                amide  provides  long-term  multilineage  engraftment.  J  Clin  Invest   495.  Helgason  CD,  Antonchuk  J,  Bodner  C,  et al:  Homeostasis  and
                124:3121–3128, 2014. doi: 10.1172/JCI74556.           regeneration  of  the  hematopoietic  stem  cell  pool  are  altered  in
            470.  Gratwohl A, et al: Hematopoietic stem cell transplantation: a global per-  SHIP-deficient  mice.  Blood  102:3541–3547,  2003.  doi:  10.1182/
                spective. JAMA 303:1617–1624, 2010. doi: 10.1001/jama.2010.491.  blood-2002-12-3939.
            471.  Copelan EA: Hematopoietic stem-cell transplantation. N Engl J Med   496.  Nemeth MJ, Kirby MR, Bodine DM: Hmgb3 regulates the balance
                354:1813–1826, 2006. doi: 10.1056/NEJMra052638.       between  hematopoietic  stem  cell  self-renewal  and  differentiation.
   145   146   147   148   149   150   151   152   153   154   155