Page 210 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 210
162 Part II Cellular Basis of Hematology
clinically obvious, the existence of these subtle links necessitates 19. Xu Q: The impact of progenitor cells in atherosclerosis. Nat Clin Pract
a greater consideration of blood vessel–regulating processes in the Cardiovasc Med 3:94–101, 2006.
pathogenesis and therapy of hematologic disorders. 20. Dome B, Hendrix MJ, Paku S, et al: Alternative vascularization mecha-
nisms in cancer: Pathology and therapeutic implications. Am J Pathol
170:1–15, 2007.
REFERENCES 21. Heil M, Schaper W: Arteriogenic growth factors, chemokines and prote-
ases as a prerequisite for arteriogenesis. Drug News Perspect 18:317–322,
1. Folkman J: Angiogenesis: an organizing principle for drug discovery? Nat 2005.
Rev Drug Discov 6:273–286, 2007. 22. Cheng L, Huang Z, Zhou W, et al: Glioblastoma stem cells generate
2. Carmeliet P, Jain RK: Molecular mechanisms and clinical applications of vascular pericytes to support vessel function and tumor growth. Cell
angiogenesis. Nature 473:298–307, 2011. 153:139–152, 2013.
3. Dvorak FH, Rickles FR: Malignancy and hemostasis. In Coleman RB, 23. Rodriguez FJ, Orr BA, Ligon KL, et al: Neoplastic cells are a rare com-
Marder VJ, Clowes AW, et al, editors: Hemostasis and thrombosis: Basic ponent in human glioblastoma microvasculature. Oncotarget 3:98–106,
principles and clinical practice, Philadelphia, 2006, Lippincott Company 2012.
Williams & Wilkins, p 851. 24. Welti J, Loges S, Dimmeler S, et al: Recent molecular discoveries
4. Kerbel RS: Tumor angiogenesis. N Engl J Med 358:2039–2049, 2008. in angiogenesis and antiangiogenic therapies in cancer. J Clin Invest
5. Ferrara N: Role of myeloid cells in vascular endothelial growth factor- 123:3190–3200, 2013.
independent tumor angiogenesis. Curr Opin Hematol 17:219–224, 25. Ghesquiere B, Wong BW, Kuchnio A, et al: Metabolism of stromal and
2010. immune cells in health and disease. Nature 511:167–176, 2014.
6. Hurwitz HI, Saltz LB, Van CE, et al: Venous thromboembolic events 26. Thurston G, Noguera-Troise I, Yancopoulos GD: The Delta paradox:
with chemotherapy plus bevacizumab: a pooled analysis of patients in DLL4 blockade leads to more tumour vessels but less tumour growth.
randomized phase II and III studies. J Clin Oncol 29:1757–1764, 2011. Nat Rev Cancer 7:327–331, 2007.
7. Medinger M, Mross K: Clinical trials with anti-angiogenic agents in 27. Fantin A, Vieira JM, Gestri G, et al: Tissue macrophages act as cellular
hematological malignancies. J Angiogenes Res 2:10, 2010. chaperones for vascular anastomosis downstream of VEGF-mediated
8. Ciau-Uitz A, Monteiro R, Kirmizitas A, et al: Developmental hemato- endothelial tip cell induction. Blood 116:829-840, 2010.
poiesis: ontogeny, genetic programming and conservation. Exp Hematol 28. Gaengel K, Genove G, Armulik A, et al: Endothelial-mural cell signaling
42:669–683, 2014. in vascular development and angiogenesis. Arterioscler Thromb Vasc Biol
9. Rak J: Ras oncogenes and tumour vascular interface. In Thomas- 29:630–638, 2009.
Tikhonenko A, editor: Cancer genome and tumor microenvironment, New 29. Tammela T, Alitalo K: Lymphangiogenesis: Molecular mechanisms and
York, 2009, Springer, p 133. future promise. Cell 140:460–476, 2010.
10. Butler JM, Kobayashi H, Rafii S: Instructive role of the vascular niche 30. Ricci-Vitiani L, Pallini R, Biffoni M, et al: Tumour vascularization
in promoting tumour growth and tissue repair by angiocrine factors. Nat via endothelial differentiation of glioblastoma stem-like cells. Nature
Rev Cancer 10:138–146, 2010. 468:824–828, 2010.
11. Rak JW, Hegmann EJ, Lu C, et al: Progressive loss of sensitivity to 31. Holash J, Maisonpierre PC, Compton D, et al: Vessel cooption, regres-
endothelium-derived growth inhibitors expressed by human melanoma sion, and growth in tumors mediated by angiopoietins and VEGF.
cells during disease progression. J Cell Physiol 159:245–255, 1994. Science 284:1994–1998, 1999.
12. Ghajar CM, Peinado H, Mori H, et al: The perivascular niche regulates 32. Brat DJ, Van Meir EG: Vaso-occlusive and prothrombotic mechanisms
breast tumour dormancy. Nat Cell Biol 15:807–817, 2013. associated with tumor hypoxia, necrosis, and accelerated growth in
13. De Palma M, Naldini L: Tie2-expressing monocytes (TEMs): novel glioblastoma. Lab Invest 84:397–405, 2004.
targets and vehicles of anticancer therapy? Biochim Biophys Acta 33. Rey S, Semenza GL: Hypoxia-inducible factor-1-dependent mechanisms
1796:5–10, 2009. of vascularization and vascular remodelling. Cardiovasc Res 86:236–242,
14. Lusis AJ: Genetics of atherosclerosis. Trends Genet 28:267–275, 2012. 2010.
15. Ruf W, Disse J, Carneiro-Lobo TC, et al: Tissue factor and cell signal- 34. Cook KM, Figg WD: Angiogenesis inhibitors: current strategies and
ling in cancer progression and thrombosis. J Thromb Haemost 9(Suppl future prospects. CA Cancer J Clin 60:222–243, 2010.
1):306–315, 2011. doi: 10.1111/j.1538-7836.2011.04318.x. 35. Verheul HM, Pinedo HM: Possible molecular mechanisms involved in
16. Welti J, Loges S, Dimmeler S, et al: Recent molecular discoveries the toxicity of angiogenesis inhibition. Nat Rev Cancer 7:475–485, 2007.
in angiogenesis and antiangiogenic therapies in cancer. J Clin Invest 36. Zangari M, Fink LM, Elice F, et al: Thrombotic events in patients with
123:3190–3200, 2013. cancer receiving antiangiogenesis agents. J Clin Oncol 27:4865–4873,
17. Rak J: Extracellular vesicles - biomarkers and effectors of the cellular 2009.
interactome in cancer. Front Pharmacol 4:21, 2013. doi: 10.3389/ 37. Elice F, Rodeghiero F: Bleeding complications of antiangiogenic therapy:
fphar.2013.00021. [Epub; 2013 Mar 6:21]. pathogenetic mechanisms and clinical impact. Thromb Res 125(Suppl
18. Nagy JA, Dvorak HF: Heterogeneity of the tumor vasculature: the need 2):S55, 2010.
for new tumor blood vessel type-specific targets. Clin Exp Metastasis
29:657–662, 2012.

