Page 267 - Williams Hematology ( PDFDrive )
P. 267

242            Part IV:  Molecular and Cellular Hematology                                                                                                Chapter 16:  Cell-Cycle Regulation and Hematologic Disorders             243




                 53.  Yu Z, Wang L, Wang C, et al: Cyclin D1 induction of Dicer governs microRNA process-    87.  Cheng SW, Kuzyk MA, Moradian A, et al: Interaction of cyclin-dependent kinase 12/
                  ing and expression in breast cancer. Nat Commun 4:2812, 2013.  CrkRS with cyclin K1 is required for the phosphorylation of the C-terminal domain of
                 54.  Yu Q, Sicinska E, Geng Y, et al: Requirement for CDK4 kinase function in breast cancer.   RNA polymerase II. Mol Cell Biol 32(22):4691–4704, 2012.
                  Cancer Cell 9(1):23–32, 2006.                         88.  Blazek D, Kohoutek J, Bartholomeeusen K, et al: The Cyclin K/Cdk12 complex main-
                 55.  Landis MW, Pawlyk BS, Li T, et al: Cyclin D1-dependent kinase activity in murine   tains genomic stability via regulation of expression of DNA damage response genes.
                  development and mammary tumorigenesis. Cancer Cell 9(1):13–22, 2006.  Genes Dev 25(20):2158–2172, 2011.
                 56.  Dickson MA: Molecular pathways: CDK4 inhibitors for cancer therapy. Clin Cancer Res     89.  Husson H, Carideo EG, Neuberg D, et al: Gene expression profiling of follicular lym-
                  20(13):3379–3383, 2014.                                phoma and normal germinal center B cells using cDNA arrays. Blood 99(1):282–289,
                 57.  Lee Y, Dominy JE, Choi YJ, et al: Cyclin D1-Cdk4 controls glucose metabolism inde-  2002.
                  pendently of cell cycle progression. Nature 510(7506):547–551, 2014.    90.  Iorns E, Turner NC, Elliott R, et al: Identification of CDK10 as an important determi-
                 58.  Placke T, Faber K, Nonami A, et al: Requirement for CDK6 in MLL-rearranged acute   nant of resistance to endocrine therapy for breast cancer. Cancer Cell 13(2):91–104,
                  myeloid leukemia. Blood 124(1):13–23, 2014.            2008.
                 59.  Antony-Debre I, Steidl U: CDK6, a new target in MLL-driven leukemia.  Blood     91.  Trembley JH, Hu D, Slaughter CA, et al: Casein kinase 2 interacts with cyclin-dependent
                  124(1):5–6, 2014.                                      kinase 11 (CDK11) in vivo and phosphorylates both the RNA polymerase II carboxy-
                 60.  Bellail AC, Olson JJ, Hao C: SUMO1 modification stabilizes CDK6 protein and drives   l-terminal domain and CDK11 in vitro. J Biol Chem 278(4):2265–2270, 2003.
                  the cell cycle and glioblastoma progression. Nat Commun 5:4234, 2014.    92.  Shi J, Feng Y, Goulet AC, et al: The p34cdc2-related cyclin-dependent kinase 11 inter-
                 61.  Choi  YJ,  Anders  L:  Signaling  through  cyclin  D-dependent  kinases.  Oncogene   acts with the p47 subunit of eukaryotic initiation factor 3 during apoptosis. J Biol Chem
                  33(15):1890–1903, 2014.                                278(7):5062–5071, 2003.
                 62.  Schachter MM, Fisher RP: The CDK-activating kinase Cdk7: Taking yes for an answer.     93.  Yokoyama H, Gruss OJ, Rybina S, et al: Cdk11 is a RanGTP-dependent microtubule sta-
                  Cell Cycle 12(20):3239–3240, 2013.                     bilization factor that regulates spindle assembly rate. J Cell Biol 180(5):867–875, 2008.
                 63.  Schachter MM, Merrick KA, Larochelle S, et al: A Cdk7-Cdk4 T-loop phosphorylation     94.  Hu D, Valentine M, Kidd VJ, Lahti JM: CDK11(p58) is required for the maintenance of
                  cascade promotes G1 progression. Mol Cell 50(2):250–260, 2013.  sister chromatid cohesion. J Cell Sci 120(Pt 14):2424–2434, 2007.
                 64.  Fisher RP: Secrets of a double agent: CDK7 in cell-cycle control and transcription. J Cell     95.  Chandramouli A, Shi J, Feng Y, et al: Haploinsufficiency of the cdc2l gene contributes to
                  Sci 118(Pt 22):5171–5180, 2005.                        skin cancer development in mice. Carcinogenesis 28(9):2028–2035, 2007.
                 65.  Kwiatkowski N, Zhang T, Rahl PB, et al: Targeting transcription regulation in cancer     96.  Sherr CJ: Cancer cell cycles. Science 274(5293):1672–1677, 1996.
                  with a covalent CDK7 inhibitor. Nature 511(7511):616–620, 2014.    97.  Gu Y, Turck CW, Morgan DO: Inhibition of CDK2 activity in vivo by an associated 20K
                 66.  Wei P, Garber ME, Fang SM, et al: A novel CDK9-associated C-type cyclin interacts   regulatory subunit. Nature 366(6456):707–710, 1993.
                  directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR    98.  Blagosklonny MV, Pardee AB: The restriction point of the cell cycle. Cell Cycle 1(2):
                  RNA. Cell 92(4):451–462, 1998.                         103–110, 2002.
                 67.  Peng J, Zhu Y, Milton JT, Price DH: Identification of multiple cyclin subunits of human     99.  Assoian RK, Yung Y: A reciprocal relationship between Rb and Skp2: Implications for
                  P-TEFb. Genes Dev 12(5):755–762, 1998.                 restriction point control, signal transduction to the cell cycle and cancer. Cell Cycle
                 68.  Burger K, Muhl B, Rohrmoser M, et al: Cyclin-dependent kinase 9 links RNA poly-  7(1):24–27, 2008.
                  merase II transcription to processing of ribosomal RNA. J Biol Chem 288(29):21173–    100. Yung Y, Walker JL, Roberts JM, Assoian RK: A Skp2 autoinduction loop and restriction
                  21183, 2013.                                           point control. J Cell Biol 178(5):741–747, 2007.
                 69.  Ji X, Lu H, Zhou Q, Luo K: LARP7 suppresses P-TEFb activity to inhibit breast cancer     101. Nourse  J,  Firpo  E,  Flanagan  WM,  et  al:  Interleukin-2-mediated  elimination  of
                  progression and metastasis. Elife 3:e02907, 2014.      the p27Kip1 cyclin-dependent kinase inhibitor prevented by rapamycin.  Nature 372
                 70.  Wang S, Fischer PM: Cyclin-dependent kinase 9: A key transcriptional regulator   (6506):570–573, 1994.
                  and potential drug target in oncology, virology and cardiology. Trends Pharmacol Sci     102. Santamaria D, Ortega S: Cyclins and CDKS in development and cancer: Lessons from
                  29(6):302–313, 2008.                                   genetically modified mice. Front Biosci 11:1164–1188, 2006.
                 71.  Romano G: Deregulations in the cyclin-dependent kinase-9-related pathway in cancer:     103. Genovese C, Trani D, Caputi M, Claudio PP: Cell cycle control and beyond: Emerging
                  Implications for drug discovery and development. ISRN Oncol 2013:305371, 2013.  roles for the retinoblastoma gene family. Oncogene 25(38):5201–5209, 2006.
                 72.  Walsby E, Pratt G, Shao H, et al: A novel Cdk9 inhibitor preferentially targets tumor     104. Serrano M, Hannon GJ, Beach D: A new regulatory motif in cell-cycle control causing
                  cells and synergizes with fludarabine. Oncotarget 5(2):375–385, 2014.  specific inhibition of cyclin D/CDK4. Nature 366(6456):704–707, 1993.
                 73.  Yin T, Lallena MJ, Kreklau EL, et al: A novel CDK9 inhibitor shows potent antitumor     105. Chan FK, Zhang J, Cheng L, et al: Identification of human and mouse p19, a novel
                  efficacy in preclinical hematologic tumor models.  Mol Cancer Ther 13(6):1442–1456,     CDK4 and CDK6 inhibitor with homology to p16ink4. Mol Cell Biol 15(5):2682–2688,
                  2014.                                                  1995.
                 74.  Stewart DP, Koss B, Bathina M, et al: Ubiquitin-independent degradation of antiapop-    106. DeGregori J, Leone G, Ohtani K, et al: E2F-1 accumulation bypasses a G1 arrest result-
                  totic MCL-1. Mol Cell Biol 30(12):3099–3110, 2010.     ing from the inhibition of G1 cyclin-dependent kinase activity. Genes Dev 9(23):2873–
                 75.  Chen S, Dai Y, Harada H, et al: Mcl-1 down-regulation potentiates ABT-737 lethality   2887, 1995.
                  by cooperatively inducing Bak activation and Bax translocation. Cancer Res 67(2):782–    107. Nobori T, Miura K, Wu DJ, et al: Deletions of the cyclin-dependent kinase-4 inhibitor
                  791, 2007.                                             gene in multiple human cancers. Nature 368(6473):753–756, 1994.
                 76.  Chen S, Zhou L, Zhang Y, et al: Targeting SQSTM1/p62 induces cargo loading failure     108. Bai C, Sen P, Hofmann K, et al: SKP1 connects cell cycle regulators to the ubiquitin
                  and converts autophagy to apoptosis via NBK/Bik. Mol Cell Biol 34(18):3435–3449,   proteolysis machinery through a novel motif, the F-box. Cell 86(2):263–274, 1996.
                  2014.                                                 109. Feldman RM, Correll CC, Kaplan KB, Deshaies RJ: A complex of Cdc4p, Skp1p, and
                 77.  Chen S, Dai Y, Pei XY, et al: CDK inhibitors upregulate BH3-only proteins to sensitize   Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p.
                  human myeloma cells to BH3 mimetic therapies. Cancer Res 72(16):4225–4237, 2012.  Cell 91(2):221–230, 1997.
                 78.  Fujinaga K, Cujec TP, Peng J, et al: The ability of positive transcription elongation factor     110. Skowyra D, Koepp DM, Kamura T, et al: Reconstitution of G1 cyclin ubiquitination
                  B to transactivate human immunodeficiency virus transcription depends on a func-  with complexes containing SCFGrr1 and Rbx1. Science 284(5414):662–665, 1999.
                  tional kinase domain, cyclin T1, and Tat. J Virol 72(9):7154–7159, 1998.    111. Sun A, Bagella L, Tutton S, et al: From G0 to S phase: A view of the roles played by
                 79.  MacLachlan TK, Sang N, De Luca A, et al: Binding of CDK9 to TRAF2. J Cell Biochem   the retinoblastoma (Rb) family  members in  the Rb-E2F pathway.  J Cell Biochem
                  71(4):467–478, 1998.                                   102(6):1400–1404, 2007.
                 80.  Michels AA, Nguyen VT, Fraldi A, et al: MAQ1 and 7SK RNA interact with CDK9/    112. Krug U, Ganser A, Koeffler HP: Tumor suppressor genes in normal and malignant
                  cyclin T complexes in a transcription-dependent manner. Mol Cell Biol 23(14):4859–  hematopoiesis. Oncogene 21(21):3475–3495, 2002.
                  4869, 2003.                                           113. Hagemeier C, Bannister AJ, Cook A, Kouzarides T: The activation domain of transcrip-
                 81.  Garriga J, Bhattacharya S, Calbo J, et al: CDK9 is constitutively expressed through-  tion factor PU.1 binds the retinoblastoma (RB) protein and the transcription factor
                  out the cell cycle, and its steady-state expression is independent of SKP2. Mol Cell Biol   TFIID in vitro: RB shows sequence similarity to TFIID and TFIIB. Proc Natl Acad Sci U
                  23(15):5165–5173, 2003.                                S A 90(4):1580–1584, 1993.
                 82.  Poss ZC, Ebmeier CC, Taatjes DJ: The Mediator complex and transcription regulation.     114. Walkley CR, Sankaran VG, Orkin SH: Rb and hematopoiesis: Stem cells to anemia. Cell
                  Crit Rev Biochem Mol Biol 48(6):575–608, 2013.         Div 3:13, 2008.
                 83.  Belakavadi M, Fondell JD: Cyclin-dependent kinase 8 positively cooperates with Medi-    115. Zhang P, Zhang X, Iwama A, et al: PU.1 inhibits GATA-1 function and erythroid differ-
                  ator to promote thyroid hormone receptor-dependent transcriptional activation. Mol   entiation by blocking GATA-1 DNA binding. Blood 96(8):2641–2648, 2000.
                  Cell Biol 30(10):2437–2448, 2010.                     116. Bergh G, Ehinger M, Olsson I, et al: Involvement of the retinoblastoma protein in
                 84.  Firestein R, Shima K, Nosho K, et al: CDK8 expression in 470 colorectal cancers in   monocytic and neutrophilic lineage commitment of human bone marrow progenitor
                  relation to beta-catenin activation, other molecular alterations and patient survival. Int   cells. Blood 94(6):1971–1978, 1999.
                  J Cancer 126(12):2863–2873, 2010.                     117. Sherr CJ, Roberts JM: Inhibitors of mammalian G1 cyclin-dependent kinases. Genes
                 85.  Xu W, Wang Z, Zhang W, et al: Mutated K-ras activates CDK8 to stimulate the    Dev 9(10):1149–1163, 1995.
                  epithelial-to-mesenchymal transition in pancreatic cancer in part via the Wnt/β-catenin     118. Zhang H, Xiong Y, Beach D: Proliferating cell nuclear antigen and p21 are components
                  signaling pathway. Cancer Lett 356(2 Pt B):613–627, 2015.  of multiple cell cycle kinase complexes. Mol Biol Cell 4(9):897–906, 1993.
                 86.  Bosken CA, Farnung L, Hintermair C, et al: The structure and substrate specificity of     119. Li Y, Jenkins CW, Nichols MA, Xiong Y: Cell cycle expression and p53 regulation of the
                  human Cdk12/Cyclin K. Nat Commun 5:3505, 2014.         cyclin-dependent kinase inhibitor p21. Oncogene 9(8):2261–2268, 1994.







          Kaushansky_chapter 16_p0213-0246.indd   242                                                                   9/18/15   11:58 PM
   262   263   264   265   266   267   268   269   270   271   272