Page 267 - Williams Hematology ( PDFDrive )
P. 267
242 Part IV: Molecular and Cellular Hematology Chapter 16: Cell-Cycle Regulation and Hematologic Disorders 243
53. Yu Z, Wang L, Wang C, et al: Cyclin D1 induction of Dicer governs microRNA process- 87. Cheng SW, Kuzyk MA, Moradian A, et al: Interaction of cyclin-dependent kinase 12/
ing and expression in breast cancer. Nat Commun 4:2812, 2013. CrkRS with cyclin K1 is required for the phosphorylation of the C-terminal domain of
54. Yu Q, Sicinska E, Geng Y, et al: Requirement for CDK4 kinase function in breast cancer. RNA polymerase II. Mol Cell Biol 32(22):4691–4704, 2012.
Cancer Cell 9(1):23–32, 2006. 88. Blazek D, Kohoutek J, Bartholomeeusen K, et al: The Cyclin K/Cdk12 complex main-
55. Landis MW, Pawlyk BS, Li T, et al: Cyclin D1-dependent kinase activity in murine tains genomic stability via regulation of expression of DNA damage response genes.
development and mammary tumorigenesis. Cancer Cell 9(1):13–22, 2006. Genes Dev 25(20):2158–2172, 2011.
56. Dickson MA: Molecular pathways: CDK4 inhibitors for cancer therapy. Clin Cancer Res 89. Husson H, Carideo EG, Neuberg D, et al: Gene expression profiling of follicular lym-
20(13):3379–3383, 2014. phoma and normal germinal center B cells using cDNA arrays. Blood 99(1):282–289,
57. Lee Y, Dominy JE, Choi YJ, et al: Cyclin D1-Cdk4 controls glucose metabolism inde- 2002.
pendently of cell cycle progression. Nature 510(7506):547–551, 2014. 90. Iorns E, Turner NC, Elliott R, et al: Identification of CDK10 as an important determi-
58. Placke T, Faber K, Nonami A, et al: Requirement for CDK6 in MLL-rearranged acute nant of resistance to endocrine therapy for breast cancer. Cancer Cell 13(2):91–104,
myeloid leukemia. Blood 124(1):13–23, 2014. 2008.
59. Antony-Debre I, Steidl U: CDK6, a new target in MLL-driven leukemia. Blood 91. Trembley JH, Hu D, Slaughter CA, et al: Casein kinase 2 interacts with cyclin-dependent
124(1):5–6, 2014. kinase 11 (CDK11) in vivo and phosphorylates both the RNA polymerase II carboxy-
60. Bellail AC, Olson JJ, Hao C: SUMO1 modification stabilizes CDK6 protein and drives l-terminal domain and CDK11 in vitro. J Biol Chem 278(4):2265–2270, 2003.
the cell cycle and glioblastoma progression. Nat Commun 5:4234, 2014. 92. Shi J, Feng Y, Goulet AC, et al: The p34cdc2-related cyclin-dependent kinase 11 inter-
61. Choi YJ, Anders L: Signaling through cyclin D-dependent kinases. Oncogene acts with the p47 subunit of eukaryotic initiation factor 3 during apoptosis. J Biol Chem
33(15):1890–1903, 2014. 278(7):5062–5071, 2003.
62. Schachter MM, Fisher RP: The CDK-activating kinase Cdk7: Taking yes for an answer. 93. Yokoyama H, Gruss OJ, Rybina S, et al: Cdk11 is a RanGTP-dependent microtubule sta-
Cell Cycle 12(20):3239–3240, 2013. bilization factor that regulates spindle assembly rate. J Cell Biol 180(5):867–875, 2008.
63. Schachter MM, Merrick KA, Larochelle S, et al: A Cdk7-Cdk4 T-loop phosphorylation 94. Hu D, Valentine M, Kidd VJ, Lahti JM: CDK11(p58) is required for the maintenance of
cascade promotes G1 progression. Mol Cell 50(2):250–260, 2013. sister chromatid cohesion. J Cell Sci 120(Pt 14):2424–2434, 2007.
64. Fisher RP: Secrets of a double agent: CDK7 in cell-cycle control and transcription. J Cell 95. Chandramouli A, Shi J, Feng Y, et al: Haploinsufficiency of the cdc2l gene contributes to
Sci 118(Pt 22):5171–5180, 2005. skin cancer development in mice. Carcinogenesis 28(9):2028–2035, 2007.
65. Kwiatkowski N, Zhang T, Rahl PB, et al: Targeting transcription regulation in cancer 96. Sherr CJ: Cancer cell cycles. Science 274(5293):1672–1677, 1996.
with a covalent CDK7 inhibitor. Nature 511(7511):616–620, 2014. 97. Gu Y, Turck CW, Morgan DO: Inhibition of CDK2 activity in vivo by an associated 20K
66. Wei P, Garber ME, Fang SM, et al: A novel CDK9-associated C-type cyclin interacts regulatory subunit. Nature 366(6456):707–710, 1993.
directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR 98. Blagosklonny MV, Pardee AB: The restriction point of the cell cycle. Cell Cycle 1(2):
RNA. Cell 92(4):451–462, 1998. 103–110, 2002.
67. Peng J, Zhu Y, Milton JT, Price DH: Identification of multiple cyclin subunits of human 99. Assoian RK, Yung Y: A reciprocal relationship between Rb and Skp2: Implications for
P-TEFb. Genes Dev 12(5):755–762, 1998. restriction point control, signal transduction to the cell cycle and cancer. Cell Cycle
68. Burger K, Muhl B, Rohrmoser M, et al: Cyclin-dependent kinase 9 links RNA poly- 7(1):24–27, 2008.
merase II transcription to processing of ribosomal RNA. J Biol Chem 288(29):21173– 100. Yung Y, Walker JL, Roberts JM, Assoian RK: A Skp2 autoinduction loop and restriction
21183, 2013. point control. J Cell Biol 178(5):741–747, 2007.
69. Ji X, Lu H, Zhou Q, Luo K: LARP7 suppresses P-TEFb activity to inhibit breast cancer 101. Nourse J, Firpo E, Flanagan WM, et al: Interleukin-2-mediated elimination of
progression and metastasis. Elife 3:e02907, 2014. the p27Kip1 cyclin-dependent kinase inhibitor prevented by rapamycin. Nature 372
70. Wang S, Fischer PM: Cyclin-dependent kinase 9: A key transcriptional regulator (6506):570–573, 1994.
and potential drug target in oncology, virology and cardiology. Trends Pharmacol Sci 102. Santamaria D, Ortega S: Cyclins and CDKS in development and cancer: Lessons from
29(6):302–313, 2008. genetically modified mice. Front Biosci 11:1164–1188, 2006.
71. Romano G: Deregulations in the cyclin-dependent kinase-9-related pathway in cancer: 103. Genovese C, Trani D, Caputi M, Claudio PP: Cell cycle control and beyond: Emerging
Implications for drug discovery and development. ISRN Oncol 2013:305371, 2013. roles for the retinoblastoma gene family. Oncogene 25(38):5201–5209, 2006.
72. Walsby E, Pratt G, Shao H, et al: A novel Cdk9 inhibitor preferentially targets tumor 104. Serrano M, Hannon GJ, Beach D: A new regulatory motif in cell-cycle control causing
cells and synergizes with fludarabine. Oncotarget 5(2):375–385, 2014. specific inhibition of cyclin D/CDK4. Nature 366(6456):704–707, 1993.
73. Yin T, Lallena MJ, Kreklau EL, et al: A novel CDK9 inhibitor shows potent antitumor 105. Chan FK, Zhang J, Cheng L, et al: Identification of human and mouse p19, a novel
efficacy in preclinical hematologic tumor models. Mol Cancer Ther 13(6):1442–1456, CDK4 and CDK6 inhibitor with homology to p16ink4. Mol Cell Biol 15(5):2682–2688,
2014. 1995.
74. Stewart DP, Koss B, Bathina M, et al: Ubiquitin-independent degradation of antiapop- 106. DeGregori J, Leone G, Ohtani K, et al: E2F-1 accumulation bypasses a G1 arrest result-
totic MCL-1. Mol Cell Biol 30(12):3099–3110, 2010. ing from the inhibition of G1 cyclin-dependent kinase activity. Genes Dev 9(23):2873–
75. Chen S, Dai Y, Harada H, et al: Mcl-1 down-regulation potentiates ABT-737 lethality 2887, 1995.
by cooperatively inducing Bak activation and Bax translocation. Cancer Res 67(2):782– 107. Nobori T, Miura K, Wu DJ, et al: Deletions of the cyclin-dependent kinase-4 inhibitor
791, 2007. gene in multiple human cancers. Nature 368(6473):753–756, 1994.
76. Chen S, Zhou L, Zhang Y, et al: Targeting SQSTM1/p62 induces cargo loading failure 108. Bai C, Sen P, Hofmann K, et al: SKP1 connects cell cycle regulators to the ubiquitin
and converts autophagy to apoptosis via NBK/Bik. Mol Cell Biol 34(18):3435–3449, proteolysis machinery through a novel motif, the F-box. Cell 86(2):263–274, 1996.
2014. 109. Feldman RM, Correll CC, Kaplan KB, Deshaies RJ: A complex of Cdc4p, Skp1p, and
77. Chen S, Dai Y, Pei XY, et al: CDK inhibitors upregulate BH3-only proteins to sensitize Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p.
human myeloma cells to BH3 mimetic therapies. Cancer Res 72(16):4225–4237, 2012. Cell 91(2):221–230, 1997.
78. Fujinaga K, Cujec TP, Peng J, et al: The ability of positive transcription elongation factor 110. Skowyra D, Koepp DM, Kamura T, et al: Reconstitution of G1 cyclin ubiquitination
B to transactivate human immunodeficiency virus transcription depends on a func- with complexes containing SCFGrr1 and Rbx1. Science 284(5414):662–665, 1999.
tional kinase domain, cyclin T1, and Tat. J Virol 72(9):7154–7159, 1998. 111. Sun A, Bagella L, Tutton S, et al: From G0 to S phase: A view of the roles played by
79. MacLachlan TK, Sang N, De Luca A, et al: Binding of CDK9 to TRAF2. J Cell Biochem the retinoblastoma (Rb) family members in the Rb-E2F pathway. J Cell Biochem
71(4):467–478, 1998. 102(6):1400–1404, 2007.
80. Michels AA, Nguyen VT, Fraldi A, et al: MAQ1 and 7SK RNA interact with CDK9/ 112. Krug U, Ganser A, Koeffler HP: Tumor suppressor genes in normal and malignant
cyclin T complexes in a transcription-dependent manner. Mol Cell Biol 23(14):4859– hematopoiesis. Oncogene 21(21):3475–3495, 2002.
4869, 2003. 113. Hagemeier C, Bannister AJ, Cook A, Kouzarides T: The activation domain of transcrip-
81. Garriga J, Bhattacharya S, Calbo J, et al: CDK9 is constitutively expressed through- tion factor PU.1 binds the retinoblastoma (RB) protein and the transcription factor
out the cell cycle, and its steady-state expression is independent of SKP2. Mol Cell Biol TFIID in vitro: RB shows sequence similarity to TFIID and TFIIB. Proc Natl Acad Sci U
23(15):5165–5173, 2003. S A 90(4):1580–1584, 1993.
82. Poss ZC, Ebmeier CC, Taatjes DJ: The Mediator complex and transcription regulation. 114. Walkley CR, Sankaran VG, Orkin SH: Rb and hematopoiesis: Stem cells to anemia. Cell
Crit Rev Biochem Mol Biol 48(6):575–608, 2013. Div 3:13, 2008.
83. Belakavadi M, Fondell JD: Cyclin-dependent kinase 8 positively cooperates with Medi- 115. Zhang P, Zhang X, Iwama A, et al: PU.1 inhibits GATA-1 function and erythroid differ-
ator to promote thyroid hormone receptor-dependent transcriptional activation. Mol entiation by blocking GATA-1 DNA binding. Blood 96(8):2641–2648, 2000.
Cell Biol 30(10):2437–2448, 2010. 116. Bergh G, Ehinger M, Olsson I, et al: Involvement of the retinoblastoma protein in
84. Firestein R, Shima K, Nosho K, et al: CDK8 expression in 470 colorectal cancers in monocytic and neutrophilic lineage commitment of human bone marrow progenitor
relation to beta-catenin activation, other molecular alterations and patient survival. Int cells. Blood 94(6):1971–1978, 1999.
J Cancer 126(12):2863–2873, 2010. 117. Sherr CJ, Roberts JM: Inhibitors of mammalian G1 cyclin-dependent kinases. Genes
85. Xu W, Wang Z, Zhang W, et al: Mutated K-ras activates CDK8 to stimulate the Dev 9(10):1149–1163, 1995.
epithelial-to-mesenchymal transition in pancreatic cancer in part via the Wnt/β-catenin 118. Zhang H, Xiong Y, Beach D: Proliferating cell nuclear antigen and p21 are components
signaling pathway. Cancer Lett 356(2 Pt B):613–627, 2015. of multiple cell cycle kinase complexes. Mol Biol Cell 4(9):897–906, 1993.
86. Bosken CA, Farnung L, Hintermair C, et al: The structure and substrate specificity of 119. Li Y, Jenkins CW, Nichols MA, Xiong Y: Cell cycle expression and p53 regulation of the
human Cdk12/Cyclin K. Nat Commun 5:3505, 2014. cyclin-dependent kinase inhibitor p21. Oncogene 9(8):2261–2268, 1994.
Kaushansky_chapter 16_p0213-0246.indd 242 9/18/15 11:58 PM

