Page 269 - Williams Hematology ( PDFDrive )
P. 269

244            Part IV:  Molecular and Cellular Hematology                                                                                                Chapter 16:  Cell-Cycle Regulation and Hematologic Disorders             245




                 177. Tse AN, Sheikh TN, Alan H, et al: 90-kDa heat shock protein inhibition abrogates the     210. Tam WF, Gu TL, Chen J, et al: Id1 is a common downstream target of oncogenic
                  topoisomerase I poison-induced G2/M checkpoint in p53-null tumor cells by depleting   tyrosine kinases in leukemic cells. Blood 112(5):1981–1992, 2008.
                  Chk1 and Wee1. Mol Pharmacol 75(1):124–133, 2009.     211. Graham SM, Cox AD, Drivas G, et al: Aberrant function of the Ras-related protein
                 178. Aarts M, Sharpe R, Garcia-Murillas I, et al: Forced mitotic entry of S-phase cells as   TC21/R-Ras2 triggers malignant transformation. Mol Cell Biol 14(6):4108–4115, 1994.
                  a therapeutic strategy induced by inhibition of WEE1. Cancer Discov 2(6):524–539,       212. Saxena N, Lahiri SS, Hambarde S, Tripathi RP: RAS: Target for cancer therapy. Cancer
                  2012.                                                  Invest 26(9):948–955, 2008.
                 179. Mrozek K, Heinonen K, Bloomfield CD: Clinical importance of cytogenetics in acute     213. Khosravi-Far R, Solski PA, Clark GJ, et al: Activation of Rac1, RhoA, and mitogen-
                  myeloid leukaemia. Best Pract Res Clin Haematol 14(1):19–47, 2001.  activated protein kinases is required for Ras transformation. Mol Cell Biol 15(11):6443–
                 180. Frohling  S,  Dohner  H:  Chromosomal  abnormalities  in  cancer.  N Engl J Med   6453, 1995.
                  359(7):722–734, 2008.                                 214. Yip SC, El-Sibai M, Coniglio SJ, et al: The distinct roles of Ras and Rac in PI 3-kinase-
                 181. Neff T, Armstrong SA: Recent progress toward epigenetic therapies: The example of   dependent  protrusion  during  EGF-stimulated  cell  migration.  J Cell Sci  120
                  mixed lineage leukemia. Blood 121(24):4847–4853, 2013.  (Pt 17):3138–3146, 2007.
                 182. Dann EJ, Rowe JM: Biology and therapy of secondary leukaemias. Best Pract Res Clin     215. Schlessinger K, Hall A, Tolwinski N: Wnt signaling pathways meet Rho GTPases. Genes
                  Haematol 14(1):119–137, 2001.                          Dev 23(3):265–277, 2009.
                 183. Vega F, Medeiros LJ: Chromosomal translocations involved in non-Hodgkin lympho-    216. Chang F, Steelman LS, Lee JT, et al: Signal transduction mediated by the Ras/Raf/MEK/
                  mas. Arch Pathol Lab Med 127(9):1148–1160, 2003.       ERK pathway from cytokine receptors to transcription factors: Potential targeting for
                 184. Ichikawa M, Asai T, Chiba S, et al: Runx1/AML-1 ranks as a master regulator of adult   therapeutic intervention. Leukemia 17(7):1263–1293, 2003.
                  hematopoiesis. Cell Cycle 3(6):722–724, 2004.         217. Crump M: Inhibition of raf kinase in the treatment of acute myeloid leukemia. Curr
                 185. Elagib KE, Racke FK, Mogass M, et al: RUNX1 and GATA-1 coexpression and cooper-  Pharm Des 8(25):2243–2248, 2002.
                  ation in megakaryocytic differentiation. Blood 101(11):4333–4341, 2003.    218. Davis RK, Chellappan S: Disrupting the Rb-Raf-1 interaction: A potential therapeutic
                 186. Okuda T, van Deursen J, Hiebert SW, et al: AML1, the target of multiple chromosomal   target for cancer. Drug News Perspect 21(6):331–335, 2008.
                  translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell     219. Thiel G, Ekici M, Rossler OG: Regulation of cellular proliferation, differentiation and
                  84(2):321–330, 1996.                                   cell death by activated Raf. Cell Commun Signal 7:8, 2009.
                 187. Scandura JM, Boccuni P, Cammenga J, Nimer SD: Transcription factor fusions in acute     220. Johnson NL, Gardner AM, Diener KM, et al: Signal transduction pathways regulated by
                  leukemia: Variations on a theme. Oncogene 21(21):3422–3444, 2002.  mitogen-activated/extracellular response kinase kinase kinase induce cell death. J Biol
                 188. Gilles L, Guieze R, Bluteau D, et al: P19INK4D links endomitotic arrest and megakary-  Chem 271(6):3229–3237, 1996.
                  ocyte maturation and is regulated by AML-1. Blood 111(8):4081–4091, 2008.    221. Seth A, Gonzalez FA, Gupta S, et al: Signal transduction within the nucleus by mitogen-
                 189. Wichmann C, Chen L, Heinrich M, et al: Targeting the oligomerization domain of ETO   activated protein kinase. J Biol Chem 267(34):24796–24804, 1992.
                  interferes with RUNX1/ETO oncogenic activity in t(8;21)-positive leukemic cells. Can-    222. Amendola D, De Salvo M, Marchese R, et al: Myc down-regulation affects cyclin D1/
                  cer Res 67(5):2280–2289, 2007.                         cdk4 activity and induces apoptosis via Smac/Diablo pathway in an astrocytoma cell
                 190. Lin RJ, Sternsdorf T, Tini M, Evans RM: Transcriptional regulation in acute promyelo-  line. Cell Prolif 42(1):94–109, 2009.
                  cytic leukemia. Oncogene 20(49):7204–7215, 2001.      223. Zhang H, Gao P, Fukuda R, et al: HIF-1 inhibits mitochondrial biogenesis and cellu-
                 191. Le XF, Vallian S, Mu ZM, et al: Recombinant PML adenovirus suppresses growth and   lar respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity.
                  tumorigenicity of human breast cancer cells by inducing G1 cell cycle arrest and apop-  Cancer Cell 11(5):407–420, 2007.
                  tosis. Oncogene 16(14):1839–1849, 1998.               224. Hoffmann I, Clarke PR, Marcote MJ, et al: Phosphorylation and activation of human
                 192. Bischof O, Nacerddine K, Dejean A: Human papillomavirus oncoprotein E7 targets the   cdc25-C by cdc2—Cyclin B and its involvement in the self-amplification of MPF at
                  promyelocytic leukemia protein and circumvents cellular senescence via the Rb and   mitosis. EMBO J 12(1):53–63, 1993.
                  p53 tumor suppressor pathways. Mol Cell Biol 25(3):1013–1024, 2005.    225. Kramer MH, Hermans J, Wijburg E, et al: Clinical relevance of BCL2, BCL6, and MYC
                 193. Jul-Larsen A, Grudic A, Bjerkvig R, Boe SO: Cell-cycle regulation and dynamics of   rearrangements in diffuse large B-cell lymphoma. Blood 92(9):3152–3162, 1998.
                  cytoplasmic compartments containing the promyelocytic leukemia protein and nucle-    226. Bonnotte B, Favre N, Moutet M, et al: Bcl-2-mediated inhibition of apoptosis prevents
                  oporins. J Cell Sci 122(Pt 8):1201–1210, 2009.         immunogenicity  and  restores  tumorigenicity  of  spontaneously  regressive  tumors.  J
                 194. Salomoni P, Pandolfi PP: The role of PML in tumor suppression. Cell 108(2):165–170,   Immunol 161(3):1433–1438, 1998.
                  2002.                                                 227. Yin DX, Schimke RT: Inhibition of apoptosis by overexpressing Bcl-2 enhances gene
                 195. Hayakawa F, Abe A, Kitabayashi I, et al: Acetylation of PML is involved in histone   amplification by a mechanism independent of aphidicolin pretreatment. Proc Natl Acad
                  deacetylase inhibitor-mediated apoptosis. J Biol Chem 283(36):24420–24425, 2008.  Sci U S A 93(8):3394–3398, 1996.
                 196. Chen Z, Brand NJ, Chen A, et al: Fusion between a novel Kruppel-like zinc finger gene     228. Del Principe MI, Del Poeta G, Venditti A, et al: Apoptosis and immaturity in acute
                  and the retinoic acid receptor-alpha locus due to a variant t(11;17) translocation asso-  myeloid leukemia. Hematology 10(1):25–34, 2005.
                  ciated with acute promyelocytic leukaemia. EMBO J 12(3):1161–1167, 1993.    229. Glaser SP, Lee EF, Trounson E, et al: Anti-apoptotic Mcl-1 is essential for the devel-
                 197. Tefferi A, Gilliland DG: Oncogenes in myeloproliferative disorders. Cell Cycle 6(5):550–  opment and sustained growth of acute myeloid leukemia. Genes Dev 26(2):120–
                  566, 2007.                                             125, 2012.
                 198. Ren R: Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leu-    230. Gelmetti V, Zhang J, Fanelli M, et al: Aberrant recruitment of the nuclear receptor
                  kaemia. Nat Rev Cancer 5(3):172–183, 2005.             corepressor-histone deacetylase complex by the acute myeloid leukemia fusion partner
                 199. Skorski T: BCR/ABL regulates response to DNA damage: The role in resistance to geno-  ETO. Mol Cell Biol 18(12):7185–7191, 1998.
                  toxic treatment and in genomic instability. Oncogene 21(56):8591–8604, 2002.    231. Wang J, Hoshino T, Redner RL, et al: ETO, fusion partner in t(8;21) acute myeloid leu-
                 200. Gleissner B, Thiel E: Molecular genetic events in adult acute lymphoblastic leukemia.   kemia, represses transcription by interaction with the human N-CoR/mSin3/HDAC1
                  Expert Rev Mol Diagn 3(3):339–355, 2003.               complex. Proc Natl Acad Sci U S A 95(18):10860–10865, 1998.
                 201. Agarwal A, Mackenzie RJ, Besson A, et al: BCR-ABL1 promotes leukemia by convert-    232. Wong CW, Privalsky ML: Components of the SMRT corepressor complex exhibit dis-
                  ing p27 into a cytoplasmic oncoprotein. Blood 124(22):3260–3273, 2014.  tinctive interactions with the POZ domain oncoproteins PLZF, PLZF-RARalpha, and
                 202. Chi YH, Ward JM, Cheng LI, et al: Spindle assembly checkpoint and p53 deficiencies   BCL-6. J Biol Chem 273(42):27695–27702, 1998.
                  cooperate for tumorigenesis in mice. Int J Cancer 124(6):1483–1489, 2009.    233. David G, Alland L, Hong SH, et al: Histone deacetylase associated with mSin3A medi-
                 203. Fabbro D, Ruetz S, Buchdunger E, et al: Protein kinases as targets for anticancer agents:   ates repression by the acute promyelocytic leukemia-associated PLZF protein. Onco-
                  From inhibitors to useful drugs. Pharmacol Ther 93(2–3):79–98, 2002.  gene 16(19):2549–2556, 1998.
                 204. Spinelli O, Peruta B, Tosi M, et al: Clearance of minimal residual disease after allogeneic     234. Yunis JJ, Ramsay N: Retinoblastoma and subband deletion of chromosome 13. Am J Dis
                  stem cell transplantation and the prediction of the clinical outcome of adult patients   Child 132(2):161–163, 1978.
                  with high-risk acute lymphoblastic leukemia. Haematologica 92(5):612–618, 2007.    235. Grana X, Garriga J, Mayol X: Role of the retinoblastoma protein family, pRB, p107 and
                 205. Tirado CA, Sebastian S, Moore JO, et al: Molecular and cytogenetic characterization of   p130 in the negative control of cell growth. Oncogene 17(25):3365–3383, 1998.
                  a novel rearrangement involving chromosomes 9, 12, and 17 resulting in ETV6 (TEL)     236. Bookstein R, Lee WH: Molecular genetics of the retinoblastoma suppressor gene. Crit
                  and ABL fusion. Cancer Genet Cytogenet 157(1):74–77, 2005.  Rev Oncog 2(3):211–227, 1991.
                 206. Rodrigues GA, Park M: Dimerization mediated through a leucine zipper activates the     237. Chellappan S, Kraus VB, Kroger B, et al: Adenovirus E1A, simian virus 40 tumor anti-
                  oncogenic potential of the met receptor tyrosine kinase. Mol Cell Biol 13(11):6711–  gen, and human papillomavirus E7 protein share the capacity to disrupt the interaction
                  6722, 1993.                                            between transcription factor E2F and the retinoblastoma gene product. Proc Natl Acad
                 207. Fujimoto J, Shiota M, Iwahara T, et al: Characterization of the transforming activity of   Sci U S A 89(10):4549–4553, 1992.
                  p80, a hyperphosphorylated protein in a Ki-1 lymphoma cell line with chromosomal     238. Stommel JM, Wahl GM: Accelerated MDM2 auto-degradation induced by DNA-damage
                  translocation t(2;5). Proc Natl Acad Sci U S A 93(9):4181–4186, 1996.  kinases is required for p53 activation. EMBO J 23(7):1547–1556, 2004.
                 208. Amin HM,  Lai R: Pathobiology of ALK+ anaplastic  large-cell lymphoma.  Blood     239. Kubbutat MH, Jones SN, Vousden KH: Regulation of p53 stability by Mdm2. Nature
                  110(7):2259–2267, 2007.                                387(6630):299–303, 1997.
                 209. Golub TR, Barker GF, Lovett M, Gilliland DG: Fusion of PDGF receptor beta to a novel     240. Eischen CM, Lozano G: P53 and MDM2: Antagonists or partners in crime? Cancer Cell
                  ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal   15(3):161–162, 2009.
                  translocation. Cell 77(2):307–316, 1994.              241. Shadfan M, Lopez-Pajares V, Yuan ZM: MDM2 and MDMX: Alone and together in
                                                                         regulation of p53. Transl Cancer Res 1(2):88–89, 2012.







          Kaushansky_chapter 16_p0213-0246.indd   244                                                                   9/18/15   11:58 PM
   264   265   266   267   268   269   270   271   272   273   274