Page 270 - Williams Hematology ( PDFDrive )
P. 270
244 Part IV: Molecular and Cellular Hematology Chapter 16: Cell-Cycle Regulation and Hematologic Disorders 245
242. Bouska A, Eischen CM: Mdm2 affects genome stability independent of p53. Cancer Res 273. Hori Y, Hori H, Yamada Y, et al: The methylthioadenosine phosphorylase gene is fre-
69(5):1697–1701, 2009. quently co-deleted with the p16INK4a gene in acute type adult T-cell leukemia. Int J
243. Roth J, Dobbelstein M, Freedman DA, et al: Nucleo-cytoplasmic shuttling of the hdm2 Cancer 75(1):51–56, 1998.
oncoprotein regulates the levels of the p53 protein via a pathway used by the human 274. Kratzke RA, Otterson GA, Lincoln CE, et al: Immunohistochemical analysis of the
immunodeficiency virus rev protein. EMBO J 17(2):554–564, 1998. p16INK4 cyclin-dependent kinase inhibitor in malignant mesothelioma. J Natl Cancer
244. Li YC, Wahl GM: What a difference a phosphate makes: Life or death decided by a Inst 87(24):1870–1875, 1995.
single amino acid in MDM2. Cancer Cell 21(5):595–596, 2012. 275. Cayuela JM, Gardie B, Sigaux F: Disruption of the multiple tumor suppressor gene
245. Quelle DE, Zindy F, Ashmun RA, Sherr CJ: Alternative reading frames of the INK4a MTS1/p16(INK4a)/CDKN2 by illegitimate V(D)J recombinase activity in T-cell acute
tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle lymphoblastic leukemias. Blood 90(9):3720–3726, 1997.
arrest. Cell 83(6):993–1000, 1995. 276. Becker TM, Haferkamp S, Dijkstra MK, et al: The chromatin remodelling factor BRG1
246. Stirewalt DL, Kopecky KJ, Meshinchi S, et al: FLT3, RAS, and TP53 mutations in elderly is a novel binding partner of the tumor suppressor p16INK4a. Mol Cancer 8:4, 2009.
patients with acute myeloid leukemia. Blood 97(11):3589–3595, 2001. 277. Christopher SA, Diegelman P, Porter CW, Kruger WD: Methylthioadenosine phospho-
247. Faderl S, Kantarjian HM, Estey E, et al: The prognostic significance of p16(INK4a)/ rylase, a gene frequently codeleted with p16(cdkN2a/ARF), acts as a tumor suppressor
p14(ARF) locus deletion and MDM-2 protein expression in adult acute myelogenous in a breast cancer cell line. Cancer Res 62(22):6639–6644, 2002.
leukemia. Cancer 89(9):1976–1982, 2000. 278. Lan L, Trempus C, Gilmour SK: Inhibition of ornithine decarboxylase (ODC) decreases
248. Kojima K, Konopleva M, Samudio IJ, et al: MDM2 antagonists induce p53-dependent tumor vascularization and reverses spontaneous tumors in ODC/Ras transgenic mice.
apoptosis in AML: Implications for leukemia therapy. Blood 106(9):3150–3159, 2005. Cancer Res 60(20):5696–5703, 2000.
249. Kojima K, Konopleva M, Samudio IJ, et al: Concomitant inhibition of MDM2 and Bcl-2 279. Subhi AL, Diegelman P, Porter CW, et al: Methylthioadenosine phosphorylase regu-
protein function synergistically induce mitochondrial apoptosis in AML. Cell Cycle lates ornithine decarboxylase by production of downstream metabolites. J Biol Chem
5(23):2778–2786, 2006. 278(50):49868–49873, 2003.
250. Zhang W, Konopleva M, Burks JK, et al: Blockade of mitogen-activated protein kinase/ 280. Stevens AP, Spangler B, Wallner S, et al: Direct and tumor microenvironment mediated
extracellular signal-regulated kinase kinase and murine double minute synergistically influences of 5′-deoxy-5′-(methylthio)adenosine on tumor progression of malignant
induces Apoptosis in acute myeloid leukemia via BH3-only proteins Puma and Bim. melanoma. J Cell Biochem 106(2):210–219, 2009.
Cancer Res 70(6):2424–2434, 2010. 281. Jaffrain-Rea ML, Ferretti E, Toniato E, et al: p16 (INK4a, MTS-1) gene polymorphism
251. Kojima K, Konopleva M, Samudio IJ, et al: Mitogen-activated protein kinase kinase and methylation status in human pituitary tumours. Clin Endocrinol (Oxf) 51(3):317–
inhibition enhances nuclear proapoptotic function of p53 in acute myelogenous leuke- 325, 1999.
mia cells. Cancer Res 67(7):3210–3219, 2007. 282. Baylin SB, Herman JG, Graff JR, et al: Alterations in DNA methylation: A fundamental
252. Kojima K, Shimanuki M, Shikami M, et al: Cyclin-dependent kinase 1 inhibitor aspect of neoplasia. Adv Cancer Res 72:141–196, 1998.
RO-3306 enhances p53-mediated Bax activation and mitochondrial apoptosis in AML. 283. Boultwood J, Wainscoat JS: Gene silencing by DNA methylation in haematological
Cancer Sci 100(6):1128–1136, 2009. malignancies. Br J Haematol 138(1):3–11, 2007.
253. Carter BZ, Mak DH, Schober WD, et al: Simultaneous activation of p53 and inhibi- 284. Timmermann S, Hinds PW, Munger K: Re-expression of endogenous p16ink4a in oral
tion of XIAP enhance the activation of apoptosis signaling pathways in AML. Blood squamous cell carcinoma lines by 5-aza-2′-deoxycytidine treatment induces a senes-
115(2):306–314, 2010. cence-like state. Oncogene 17(26):3445–3453, 1998.
254. Kojima K, McQueen T, Chen Y, et al: p53 activation of mesenchymal stromal cells 285. Hennessy BT, Garcia-Manero G, Kantarjian HM, Giles FJ: DNA methylation in haema-
partially abrogates microenvironment-mediated resistance to FLT3 inhibition in AML tological malignancies: The role of decitabine. Expert Opin Investig Drugs 12(12):1985–
through HIF-1alpha-mediated down-regulation of CXCL12. Blood 118(16):4431–4439, 1993, 2003.
2011. 286. Silverman LR, Demakos EP, Peterson BL, et al: Randomized controlled trial of azaciti-
255. Kojima K, Konopleva M, Tsao T, et al: Selective FLT3 inhibitor FI-700 neutralizes Mcl-1 dine in patients with the myelodysplastic syndrome: A study of the cancer and leukemia
and enhances p53-mediated apoptosis in AML cells with activating mutations of FLT3 group B. J Clin Oncol 20(10):2429–2440, 2002.
through Mcl-1/Noxa axis. Leukemia 24(1):33–43, 2010. 287. Kantarjian H, Issa JP, Rosenfeld CS, et al: Decitabine improves patient outcomes in mye-
256. Kojima K, Kornblau SM, Ruvolo V, et al: Prognostic impact and targeting of CRM1 in lodysplastic syndromes: Results of a phase III randomized study. Cancer 106(8):1794–
acute myeloid leukemia. Blood 121(20):4166–4174, 2013. 1803, 2006.
257. Kamijo T, Zindy F, Roussel MF, et al: Tumor suppression at the mouse INK4a locus 288. Fenaux P, Mufti GJ, Hellstrom-Lindberg E, et al: Efficacy of azacitidine compared with
mediated by the alternative reading frame product p19ARF. Cell 91(5):649–659, that of conventional care regimens in the treatment of higher-risk myelodysplastic syn-
1997. dromes: A randomised, open-label, phase III study. Lancet Oncol 10(3):223–232, 2009.
258. Bates S, Phillips AC, Clark PA, et al: p14ARF links the tumour suppressors RB and p53. 289. Blum W, Garzon R, Klisovic RB, et al: Clinical response and miR-29b predictive signif-
Nature 395(6698):124–125, 1998. icance in older AML patients treated with a 10-day schedule of decitabine. Proc Natl
259. Palmero I, Pantoja C, Serrano M: P19ARF links the tumour suppressor p53 to Ras. Acad Sci U S A 107(16):7473–7478, 2010.
Nature 395(6698):125–126, 1998. 290. Fenaux P, Mufti GJ, Hellstrom-Lindberg E, et al: Azacitidine prolongs overall survival
260. Prives C: Signaling to p53: Breaking the MDM2-p53 circuit. Cell 95(1):5–8, 1998. compared with conventional care regimens in elderly patients with low bone marrow
261. Sherr CJ: Tumor surveillance via the ARF-p53 pathway. Genes Dev 12(19):2984–2991, blast count acute myeloid leukemia. J Clin Oncol 28(4):562–569, 2010.
1998. 291. Kantarjian HM, Thomas XG, Dmoszynska A, et al: Multicenter, randomized,
262. Kurz EU, Lees-Miller SP: DNA damage-induced activation of ATM and ATM-dependent open-label, phase III trial of decitabine versus patient choice, with physician advice, of
signaling pathways. DNA Repair (Amst) 3(8–9):889–900, 2004. either supportive care or low-dose cytarabine for the treatment of older patients with
263. Senoo M, Manis JP, Alt FW, McKeon F: P63 and p73 are not required for the development newly diagnosed acute myeloid leukemia. J Clin Oncol 30(21):2670–2677, 2012.
and p53-dependent apoptosis of T cells. Cancer Cell 6(1):85–89, 2004. 292. Xiong J, Epstein RJ: Growth inhibition of human cancer cells by 5-aza-2′-deoxycytidine
264. Deyoung MP, Ellisen LW: P63 and p73 in human cancer: Defining the network. Onco- does not correlate with its effects on INK4a/ARF expression or initial promoter methy-
gene 26(36):5169–5183, 2007. lation status. Mol Cancer Ther 8(4):779–785, 2009.
265. Di Como CJ, Gaiddon C, Prives C: P73 function is inhibited by tumor-derived p53 293. Razin A: CpG methylation, chromatin structure and gene silencing-a three-way
mutants in mammalian cells. Mol Cell Biol 19(2):1438–1449, 1999. connection. EMBO J 17(17):4905–4908, 1998.
266. Melino G, Lu X, Gasco M, et al: Functional regulation of p73 and p63: Development 294. Jones PL, Veenstra GJ, Wade PA, et al: Methylated DNA and MeCP2 recruit histone
and cancer. Trends Biochem Sci 28(12):663–670, 2003. deacetylase to repress transcription. Nat Genet 19(2):187–191, 1998.
267. Kawano S, Miller CW, Gombart AF, et al: Loss of p73 gene expression in leukemias/ 295. Bueno MJ, Perez de Castro I, Malumbres M: Control of cell proliferation pathways by
lymphomas due to hypermethylation. Blood 94(3):1113–1120, 1999. microRNAs. Cell Cycle 7(20):3143–3148, 2008.
268. Olopade OI, Jenkins RB, Ransom DT, et al: Molecular analysis of deletions of the short 296. Vigushin DM, Coombes RC: Histone deacetylase inhibitors in cancer treatment. Anti-
arm of chromosome 9 in human gliomas. Cancer Res 52(9):2523–2529, 1992. cancer Drugs 13(1):1–13, 2002.
269. Schmid M, Malicki D, Nobori T, et al: Homozygous deletions of methylthioadenosine 297. Thiagalingam S, Cheng KH, Lee HJ, et al: Histone deacetylases: Unique players in shap-
phosphorylase (MTAP) are more frequent than p16INK4A (CDKN2) homozygous ing the epigenetic histone code. Ann N Y Acad Sci 983:84–100, 2003.
deletions in primary non-small cell lung cancers (NSCLC). Oncogene 17(20):2669– 298. Haberland M, Montgomery RL, Olson EN: The many roles of histone deacetylases
2675, 1998. in development and physiology: Implications for disease and therapy. Nat Rev Genet
270. Stadler WM, Olopade OI: The 9p21 region in bladder cancer cell lines: Large homozy- 10(1):32–42, 2009.
gous deletion inactivate the CDKN2, CDKN2B and MTAP genes. Urol Res 24(4):239– 299. Wang J, Saunthararajah Y, Redner RL, Liu JM: Inhibitors of histone deacetylase relieve
244, 1996. ETO-mediated repression and induce differentiation of AML1-ETO leukemia cells.
271. Gonzalez MV, Pello MF, Lopez-Larrea C, et al: Deletion and methylation of the tumour Cancer Res 59(12):2766–2769, 1999.
suppressor gene p16/CDKN2 in primary head and neck squamous cell carcinoma. 300. Zhou W, Zhu WG: The changing face of HDAC inhibitor depsipeptide. Curr Cancer
J Clin Pathol 50(6):509–512, 1997. Drug Targets 9(1):91–100, 2009.
272. Yamada Y, Hatta Y, Murata K, et al: Deletions of p15 and/or p16 genes as a poor-prognosis 301. San-Miguel JF, Hungria VT, Yoon SS, et al: Panobinostat plus bortezomib and dex-
factor in adult T-cell leukemia. J Clin Oncol 15(5):1778–1785, 1997. amethasone versus placebo plus bortezomib and dexamethasone in patients with
relapsed or relapsed and refractory multiple myeloma: A multicentre, randomised,
double-blind phase 3 trial. Lancet Oncol 15(11):1195–1206, 2014.
Kaushansky_chapter 16_p0213-0246.indd 245 9/18/15 11:58 PM

