Page 268 - Williams Hematology ( PDFDrive )
P. 268
242 Part IV: Molecular and Cellular Hematology Chapter 16: Cell-Cycle Regulation and Hematologic Disorders 243
120. Overton KW, Spencer SL, Noderer WL, et al: Basal p21 controls population hetero- 150. Zeidner JF, Foster MC, Blackford A, et al: Randomized multicenter phase II trial of
geneity in cycling and quiescent cell cycle states. Proc Natl Acad Sci U S A 111(41): timed-sequential therapy with flavopiridol (alvocidib), cytarabine, and mitoxantrone
E4386–E4393, 2014. (FLAM) versus “7+3” for adults with newly diagnosed acute myeloid leukemia (AML).
121. Dai Y, Rahmani M, Grant S: An intact NF-kappaB pathway is required for histone ASCO Meeting Abstracts 32(15 Suppl):7002, 2014.
deacetylase inhibitor-induced G1 arrest and maturation in U937 human myeloid leu- 151. Karp JE, Garrett-Mayer E, Estey EH, et al: Randomized phase II study of two sched-
kemia cells. Cell Cycle 2(5):467–472, 2003. ules of flavopiridol given as timed sequential therapy with cytosine arabinoside and
122. Dai Y, Rahmani M, Dent P, Grant S: Blockade of histone deacetylase inhibitor-induced mitoxantrone for adults with newly diagnosed, poor-risk acute myelogenous leukemia.
RelA/p65 acetylation and NF-kappaB activation potentiates apoptosis in leukemia cells Haematologica 2012;97(11):1736–1742, 2014.
through a process mediated by oxidative damage, XIAP downregulation, and c-Jun 152. Dai Y, Rahmani M, Grant S: Proteasome inhibitors potentiate leukemic cell apoptosis
N-terminal kinase 1 activation. Mol Cell Biol 25(13):5429–5444, 2005. induced by the cyclin-dependent kinase inhibitor flavopiridol through a SAPK/JNK-
123. Wang Z, Bhattacharya N, Mixter PF, et al: Phosphorylation of the cell cycle inhibitor and NF-kappaB-dependent process. Oncogene 22(46):7108–7122, 2003.
p21Cip1/WAF1 by Pim-1 kinase. Biochim Biophys Acta 1593(1):45–55, 2002. 153. Dai Y, Rahmani M, Pei XY, et al: Bortezomib and flavopiridol interact synergisti-
124. Zhang Y, Wang Z, Magnuson NS: Pim-1 kinase-dependent phosphorylation of cally to induce apoptosis in chronic myeloid leukemia cells resistant to imatinib
p21Cip1/WAF1 regulates its stability and cellular localization in H1299 cells. Mol Can- mesylate through both Bcr/Abl-dependent and -independent mechanisms. Blood
cer Res 5(9):909–922, 2007. 104(2):509–518, 2004.
125. Ellwood-Yen K, Graeber TG, Wongvipat J, et al: Myc-driven murine prostate cancer 154. Almenara J, Rosato R, Grant S: Synergistic induction of mitochondrial damage and
shares molecular features with human prostate tumors. Cancer Cell 4(3):223–238, 2003. apoptosis in human leukemia cells by flavopiridol and the histone deacetylase inhibitor
126. Kato JY, Matsuoka M, Polyak K, et al: Cyclic AMP-induced G1 phase arrest mediated suberoylanilide hydroxamic acid (SAHA). Leukemia 16(7):1331–1343, 2002.
by an inhibitor (p27Kip1) of cyclin-dependent kinase 4 activation. Cell 79(3):487–496, 155. Holkova B, Kmieciak M, Perkins EB, et al: Phase I trial of bortezomib (PS-341; NSC
1994. 681239) and “nonhybrid” (bolus) infusion schedule of alvocidib (flavopiridol; NSC
127. Caraballo JM, Acosta JC, Cortes MA, et al: High p27 protein levels in chronic lym- 649890) in patients with recurrent or refractory indolent B-cell neoplasms. Clin Cancer
phocytic leukemia are associated to low Myc and Skp2 expression, confer resistance to Res 20(22):5652–5662, 2014.
apoptosis and antagonize Myc effects on cell cycle. Oncotarget 5(13):4694–4708, 2014. 156. Holkova B, Perkins EB, Ramakrishnan V, et al: Phase I trial of bortezomib (PS-341;
128. Vervoorts J, Luscher B: Post-translational regulation of the tumor suppressor NSC 681239) and alvocidib (flavopiridol; NSC 649890) in patients with recurrent or
p27(KIP1). Cell Mol Life Sci 65(20):3255–3264, 2008. refractory B-cell neoplasms. Clin Cancer Res 17(10):3388–3397, 2011.
129. Koepp DM, Harper JW, Elledge SJ: How the cyclin became a cyclin: Regulated proteoly- 157. Holkova B, Supko JG, Ames MM, et al: A phase I trial of vorinostat and alvocidib in
sis in the cell cycle. Cell 97(4):431–434, 1999. patients with relapsed, refractory, or poor prognosis acute leukemia, or refractory ane-
130. Hirai H, Roussel MF, Kato JY, et al: Novel INK4 proteins, p19 and p18, are spe- mia with excess blasts-2. Clin Cancer Res 19(7):1873–1883, 2013.
cific inhibitors of the cyclin D-dependent kinases CDK4 and CDK6. Mol Cell Biol 158. Tse AN, Carvajal R, Schwartz GK: Targeting checkpoint kinase 1 in cancer therapeutics.
15(5):2672–2681, 1995. Clin Cancer Res 13(7):1955–1960, 2007.
131. Hannon GJ, Beach D: P15INK4B is a potential effector of TGF-beta-induced cell cycle 159. Dai Y, Grant S: New insights into checkpoint kinase 1 in the DNA damage response
arrest. Nature 371(6494):257–261, 1994. signaling network. Clin Cancer Res 16(2):376–383, 2010.
132. Adams L, Roth MJ, Abnet CC, et al: Promoter methylation in cytology specimens as an 160. Bucher N, Britten CD: G2 checkpoint abrogation and checkpoint kinase-1 targeting in
early detection marker for esophageal squamous dysplasia and early esophageal squa- the treatment of cancer. Br J Cancer 98(3):523–528, 2008.
mous cell carcinoma. Cancer Prev Res (Phila) 1(5):357–361, 2008. 161. Lee MH, Yang HY: Negative regulators of cyclin-dependent kinases and their roles in
133. Lee YK, Park JY, Kang HJ, Cho HC: Overexpression of p16INK4A and p14ARF in hae- cancers. Cell Mol Life Sci 58(12–13):1907–1922, 2001.
matological malignancies. Clin Lab Haematol 25(4):233–237, 2003. 162. Kastan MB, Bartek J: Cell-cycle checkpoints and cancer. Nature 432(7015):316–323,
134. Drexler HG: Review of alterations of the cyclin-dependent kinase inhibitor INK4 2004.
family genes p15, p16, p18 and p19 in human leukemia-lymphoma cells. Leukemia 163. Schenk EL, Koh BD, Flatten KS, et al: Effects of selective checkpoint kinase 1 inhibition
12(6):845–859, 1998. on cytarabine cytotoxicity in acute myelogenous leukemia cells in vitro. Clin Cancer Res
135. Sulong S, Moorman AV, Irving JA, et al: A comprehensive analysis of the CDKN2A 18(19):5364–5373, 2012.
gene in childhood acute lymphoblastic leukemia reveals genomic deletion, copy num- 164. Karp JE, Thomas BM, Greer JM, et al: Phase I and pharmacologic trial of cytosine ara-
ber neutral loss of heterozygosity, and association with specific cytogenetic subgroups. binoside with the selective checkpoint 1 inhibitor Sch 900776 in refractory acute leuke-
Blood 113(1):100–107, 2009. mias. Clin Cancer Res 18(24):6723–6731, 2012.
136. Diccianni MB, Batova A, Yu J, et al: Shortened survival after relapse in T-cell acute 165. Dai Y, Chen S, Kmieciak M, et al: The novel Chk1 inhibitor MK-8776 sensitizes human
lymphoblastic leukemia patients with p16/p15 deletions. Leuk Res 21(6):549–558, 1997. leukemia cells to HDAC inhibitors by targeting the intra-S checkpoint and DNA repli-
137. Belaud-Rotureau MA, Marietta V, Vergier B, et al: Inactivation of p16INK4a/CDKN2A cation and repair. Mol Cancer Ther 12(6):878–889, 2013.
gene may be a diagnostic feature of large B cell lymphoma leg type among cutaneous B 166. Petruccelli LA, Dupere-Richer D, Pettersson F, et al: Vorinostat induces reactive oxygen
cell lymphomas. Virchows Arch 452(6):607–620, 2008. species and DNA damage in acute myeloid leukemia cells. PLoS One 6(6):e20987, 2011.
138. Bender CM, Pao MM, Jones PA: Inhibition of DNA methylation by 5-aza-2′-deoxycyti- 167. Koprinarova M, Botev P, Russev G: Histone deacetylase inhibitor sodium butyrate
dine suppresses the growth of human tumor cell lines. Cancer Res 58(1):95–101, 1998. enhances cellular radiosensitivity by inhibiting both DNA nonhomologous end joining
139. Cameron EE, Bachman KE, Myohanen S, et al: Synergy of demethylation and his- and homologous recombination. DNA Repair (Amst) 10(9):970–977, 2011.
tone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 168. Brazelle W, Kreahling JM, Gemmer J, et al: Histone deacetylase inhibitors downregulate
21(1):103–107, 1999. checkpoint kinase 1 expression to induce cell death in non-small cell lung cancer cells.
140. Humbey O, Pimkina J, Zilfou JT, et al: The ARF tumor suppressor can promote the PLoS One 5(12):e14335, 2010.
progression of some tumors. Cancer Res 68(23):9608–9613, 2008. 169. Kaufmann SH, Karp JE, Litzow MR, et al: Phase I and pharmacological study of cyta-
141. Schwartz GK, Shah MA: Targeting the cell cycle: A new approach to cancer therapy. rabine and tanespimycin in relapsed and refractory acute leukemia. Haematologica
J Clin Oncol 23(36):9408–9421, 2005. 96(11):1619–1626, 2011.
142. Shapiro GI: Cyclin-dependent kinase pathways as targets for cancer treatment. J Clin 170. Weisberg E, Nonami A, Chen Z, et al: Identification of Wee1 as a novel therapeutic tar-
Oncol 24(11):1770–1783, 2006. get for mutant RAS-driven acute leukemia and other malignancies. Leukemia 29(1):27–
143. Bose P, Simmons GL, Grant S: Cyclin-dependent kinase inhibitor therapy for hemato- 37, 2015.
logic malignancies. Expert Opin Investig Drugs 22(6):723–738, 2013. 171. Tibes R, Bogenberger JM, Chaudhuri L, et al: RNAi screening of the kinome with cyta-
144. Leonard JP, LaCasce AS, Smith MR, et al: Selective CDK4/6 inhibition with tumor rabine in leukemias. Blood 119(12):2863–2872, 2012.
responses by PD0332991 in patients with mantle cell lymphoma. Blood 119(20):4597– 172. Porter CC, Kim J, Fosmire S, et al: Integrated genomic analyses identify WEE1 as a
4607, 2012. critical mediator of cell fate and a novel therapeutic target in acute myeloid leukemia.
145. Byrd JC, Lin TS, Dalton JT, et al: Flavopiridol administered using a pharmacologically Leukemia 26(6):1266–1276, 2012.
derived schedule is associated with marked clinical efficacy in refractory, genetically 173. Van Linden AA, Baturin D, Ford JB, et al: Inhibition of Wee1 sensitizes cancer cells to
high-risk chronic lymphocytic leukemia. Blood 109(2):399–404, 2007. antimetabolite chemotherapeutics in vitro and in vivo, independent of p53 functional-
146. Lin TS, Ruppert AS, Johnson AJ, et al: Phase II study of flavopiridol in relapsed chronic ity. Mol Cancer Ther 12(12):2675–2684, 2013.
lymphocytic leukemia demonstrating high response rates in genetically high-risk dis- 174. Zhou L, Zhang Y, Chen S, et al: A regimen combining the Wee1 inhibitor AZD1775
ease. J Clin Oncol 27(35):6012–6018, 2009. with HDAC inhibitors targets human acute myeloid leukemia cells harboring various
147. Bose P, Grant S: Orphan drug designation for pracinostat, volasertib and alvocidib in genetic mutations. Leukemia 29(4):807–818, 2015.
AML. Leuk Res 38(8):862–865, 2014. 175. Ha K, Fiskus W, Rao R, et al: Hsp90 inhibitor-mediated disruption of chaperone asso-
148. Bible KC, Kaufmann SH: Cytotoxic synergy between flavopiridol (NSC 649890, L86– ciation of ATR with hsp90 sensitizes cancer cells to DNA damage. Mol Cancer Ther
8275) and various antineoplastic agents: The importance of sequence of administration. 10(7):1194–1206, 2011.
Cancer Res 57(16):3375–3380, 1997. 176. Sugimoto K, Sasaki M, Isobe Y, et al: Hsp90-inhibitor geldanamycin abrogates G2
149. Karp JE, Ross DD, Yang W, et al: Timed sequential therapy of acute leukemia with arrest in p53-negative leukemia cell lines through the depletion of Chk1. Oncogene
flavopiridol: In vitro model for a phase I clinical trial. Clin Cancer Res 9(1):307–315, 27(22):3091–3101, 2008.
2003.
Kaushansky_chapter 16_p0213-0246.indd 243 9/18/15 11:58 PM

