Page 442 - Williams Hematology ( PDFDrive )
P. 442
416 Part V: Therapeutic Principles Chapter 26: Immune Cell Therapy 417
19. Moss P, Rickinson A: Cellular immunotherapy for viral infection after HSC transplan- 50. Gerlach C, Rohr JC, Perié L, et al: Heterogeneous differentiation patterns of individual
tation. Nat Rev Immunol 5:9, 2005. CD8+ T cells. Science 340:635, 2013.
20. Terrazzini N, Kern F: Cell-mediated immunity to human CMV infection: A brief over- 51. Buchholz VR, Flossdorf M, Hensel I, et al: Disparate individual fates compose robust
view. F1000Prime Rep 6:28, 2014. CD8+ T cell immunity. Science 340:630, 2013.
21. Hanley PJ, Bollard CM: Controlling cytomegalovirus: Helping the immune system take 52. Graef P, Buchholz VR, Stemberger C, et al: Serial transfer of single-cell-derived immu-
the lead. Viruses 6:2242, 2014. nocompetence reveals stemness of CD8+ central memory T cells. Immunity 41:116,
22. Simon CO, Holtappels R, Tervo HM, et al: CD8 T cells control cytomegalovirus latency 2014.
by epitope-specific sensing of transcriptional reactivation. J Virol 80:10436, 2006. 53. Stemberger C, Graef P, Odendahl M, et al: Lowest numbers of primary CD8+ T cells
23. Sacre K, Nguyen S, Deback C, et al: Expansion of human cytomegalovirus (HCMV) can reconstitute protective immunity upon adoptive immunotherapy. Blood 124:628,
immediate-early 1-specific CD8+ T cells and control of HCMV replication after alloge- 2014.
neic stem cell transplantation. J Virol 82:10143, 2008. 54. Stemberger C, Dreher S, Tschulik C, et al: Novel serial positive enrichment technology
24. Fuhrmann S, Streitz M, Reinke P, et al: T cell response to the cytomegalovirus major enables clinical multiparameter cell sorting. PLoS One 7:e35798, 2012.
capsid protein (UL86) is dominated by helper cells with a large polyfunctional compo- 55. Yin Y, Manoury B, Fåhraeus R: Self-inhibition of synthesis and antigen presentation by
nent and diverse epitope recognition. J Infect Dis 197:1455, 2008. Epstein-Barr virus-encoded EBNA1. Science 301:1371, 2003.
25. Crompton L, Khan N, Khanna R, et al: CD4+ T cells specific for glycoprotein B from 56. Thorley-Lawson DA, Gross A: Persistence of the Epstein-Barr virus and the origins of
cytomegalovirus exhibit extreme conservation of T-cell receptor usage between differ- associated lymphomas. N Engl J Med 350:1328, 2004.
ent individuals. Blood 111:2053, 2008. 57. Annels NE, Callan MFC, Tan L, et al: Changing patterns of dominant TCR usage with
26. Riddell SR, Watanabe KS, Goodrich JM, et al: Restoration of viral immunity in immu- maturation of an EBV-specific cytotoxic T cell response. J Immunol 165:4831, 2000.
nodeficient humans by the adoptive transfer of T cell clones. Science 257:238, 1992. 58. Amyes E, Hatton C, Montamat-Sicotte D, et al: Characterization of the CD4+ T cell
27. Walter EA, Greenberg PD, Gilbert MJ, et al: Reconstitution of cellular immunity against response to Epstein-Barr virus during primary and persistent infection. J Exp Med
cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones 198:903, 2003.
from the donor. N Engl J Med 333:1038, 1995. 59. Rickinson AB, Long HM, Palendira U, et al: Cellular immune controls over Epstein-
28. Peggs KS, Verfuerth S, Pizzey A, et al: Adoptive cellular therapy for early cytomegalovirus Barr virus infection: New lessons from the clinic and the laboratory. Trends Immunol
infection after allogeneic stem-cell transplantation with virus-specific T-cell lines. Lancet 35:159, 2014.
362:1375, 2003. 60. Adhikary D, Behrends U, Boerschmann H, et al: Immunodominance of lytic cycle anti-
29. Kleihauer A, Grigoleit U, Hebart H, et al: Ex vivo generation of human cytomegalovi- gens in Epstein-Barr virus-specific CD4+ T cell preparations for therapy. PLoS One
rus-specific cytotoxic T cells by peptide-pulsed dendritic cells. Br J Haematol 113:231, 2:e583, 2007.
2001. 61. Curtis RE, Travis LB, Rowlings PA, et al: Risk of lymphoproliferative disorders after
30. Micklethwaite KP, Clancy L, Sandher U, et al: Prophylactic infusion of cytomegalovirus- bone marrow transplantation: A multi-institutional study. Blood 94:2208, 1999.
specific cytotoxic T lymphocytes stimulated with Ad5f35pp65 gene-modified dendritic 62. Meij P, van Esser JWJ, Niesters HGM, et al: Impaired recovery of Epstein-Barr virus
cells after allogeneic hemopoietic stem cell transplantation. Blood 112:3974, 2008. (EBV)-specific CD8+ T lymphocytes after partially T-depleted allogeneic stem cell
31. Leen AM, Myers GD, Sili U, et al: Monoculture-derived T lymphocytes specific for mul- transplantation may identify patients at very high risk for progressive EBV reactivation
tiple viruses expand and produce clinically relevant effects in immunocompromised and lymphoproliferative disease. Blood 101:4290, 2003.
individuals. Nat Med 12:1160, 2006. 63. Kuehnle I, Huls MH, Liu Z, et al: CD20 monoclonal antibody (rituximab) for therapy
32. Einsele H, Roosnek E, Rufer N, et al: Infusion of cytomegalovirus (CMV)-specific T of Epstein-Barr virus lymphoma after hemopoietic stem-cell transplantation. Blood
cells for the treatment of CMV infection not responding to antiviral chemotherapy. 95:1502, 2000.
Blood 99:3916, 2002. 64. Papadopoulos EB, Ladanyi M, Emanuel D, et al: Infusions of donor leukocytes to treat
33. Keenan RD, Ainsworth J, Khan N, et al: Purification of cytomegalovirus-specific CD8 Epstein-Barr-virus-associated lymphoproliferative disorders after allogeneic bone mar-
T cells from peripheral blood using HLA-peptide tetramers. Br J Haematol 115:428, row transplantation. N Engl J Med 330:1185, 1994.
2001. 65. Rooney CM, Smith CA, Ng CYC, et al: Use of gene-modified virus-specific T lympho-
34. Knabel M, Franz TJ, Schiemann M, et al: Reversible MHC multimer staining for func- cytes to control Epstein-Barr-virus-related lymphoproliferation. Lancet 345:9, 1995.
tional isolation of T-cell populations and effective adoptive transfer. Nat Med 8:631, 66. Gottschalk S, Edwards OL, Sili U, et al: Generating CTLs against the subdominant
2002. Epstein-Barr virus LMP1 antigen for the adoptive immunotherapy of EBV-associated
35. Cobbold M, Khan N, Pourgheysari B, et al: Adoptive transfer of cytomegalovirus-specific malignancies. Blood 101:1905, 2003.
CTL to stem cell transplant patients after selection by HLA-peptide tetramers. J Exp 67. Rooney CM, Smith CA, Ng CYC, et al: Infusion of cytotoxic T cells for the prevention
Med 202:379, 2005. and treatment of Epstein-Barr virus-induced lymphoma in allogeneic transplant recip-
36. Schmitt A, Tonn T, Busch DH, et al: Adoptive transfer and selective reconstitution of ients. Blood 92:1549, 1998.
streptamer-selected cytomegalovirus-specific CD8+ T cells leads to virus clearance in 68. Heslop HE, Slobod KS, Pule MA, et al: Long term outcome of EBV specific T-cell infu-
patients after allogeneic peripheral blood stem cell transplantation. Transfusion 51:591, sions to prevent or treat EBV-related lymphoproliferative disease in transplant recipi-
2011. ents. Blood 115:925, 2010.
37. Becker C, Pohla H, Frankenberger B, et al: Adoptive tumor therapy with T lymphocytes 69. Styczynski J, Reusser P, Einsele H, et al: Management of HSV, VZV and EBV infections
enriched through an IFN-γ capture assay. Nat Med 7:1159, 2001. in patients with hematological malignancies and after SCT: Guidelines from the Sec-
38. Rauser G, Einsele H, Sinzger C, et al: Rapid generation of combined CMV-specific ond European Conference on Infections in Leukemia. Bone Marrow Transplant 43:757,
CD4+ and CD8+ T-cell lines for adoptive transfer into allogeneic stem cell transplant 2008.
recipients. Blood 103:3565, 2004. 70. Leen AM, Bollard CM, Myers GD, et al: Adenoviral infections in hematopoietic stem
39. Wolfl M, Kuball J, Ho WY, et al: Activation-induced expression of CD137 permits cell transplantation. Biol Blood Marrow Transplant 12:243, 2006.
detection, isolation, and expansion of full repertoire of CD8+ T cells responding to 71. Chakrabarti S, Mautner V, Osman H, et al: Adenovirus infections following allogeneic
antigen without requiring knowledge of epitope specificities. Blood 110:201, 2007. stem cell transplantation: Incidence and outcome in relation to graft manipulation,
40. Feuchtinger T, Opherk K, Bethge WA, et al: Adoptive transfer of pp65-specific T cells immunosuppression, and immune recovery. Blood 100:1619, 2002.
for the treatment of chemorefractory cytomegalovirus disease or reactivation after hap- 72. Hanley PJ, Cruz CRY, Savoldo B, et al: Functionally active virus-specific T-cells that
loidentical and matched unrelated stem cell transplantation. Blood 116:4360, 2010. target CMV, adenovirus and EBV can be expanded from naïve T-cell populations in
41. Robins HS, Srivastava SK, Campregher PV, et al: Overlap and effective size of the cord blood and will target a range of viral epitopes. Blood 114:1958, 2009.
human CD8+ T cell receptor repertoire. Sci Transl Med 2:47ra64, 2010. 73. Gerdemann U, Katari UL, Papadopoulou A, et al: Safety and clinical efficacy of rapidly-
42. Robins H, Desmarais C, Matthis J, et al: Ultra-sensitive detection of rare T cell clones. J generated trivirus-directed T cells as treatment for adenovirus, EBV, and CMV infec-
Immunol Methods 375:14, 2012. tions after allogeneic hematopoietic stem cell transplant. Mol Ther 21:2113, 2013.
43. Sallusto F, Geginat J, Lanzavecchia A: Central memory and effector memory T cell sub- 74. Papadopoulou A, Gerdemann U, Katari UL, et al: Activity of broad-spectrum T cells as
sets: Function, generation, and maintenance. Annu Rev Immunol 22:745, 2004. treatment for AdV, EBV, CMV, BKV, and HHV6 infections after HSCT. Sci Transl Med
44. Hertoghs KML, Moerland PD, van Stijn A, et al: Molecular profiling of cytomegalovirus- 6:242ra83, 2014.
induced human CD8+ T cell differentiation. J Clin Invest 120:4077, 2010. 75. Koebel CM, Vermi W, Swann JB, et al: Adaptive immunity maintains occult cancer in
45. Farber DL, Yudanin NA, Restifo NP: Human memory T cells: Generation, compart- an equilibrium state. Nature 450:903, 2007.
mentalization and homeostasis. Nat Rev Immunol 14:24, 2014. 76. Matsushita H, Vesely MD, Koboldt DC, et al: Cancer exome analysis reveals a T-cell-
46. Berger C, Jensen MC, Lansdorp PM, et al: Adoptive transfer of effector CD8+ T cells dependent mechanism of cancer immunoediting. Nature 482:400, 2012.
derived from central memory cells establishes persistent T cell memory in primates. J 77. Mittal D, Gubin MM, Schreiber RD, et al: New insights into cancer immunoediting and
Clin Invest 118:294, 2008. its three component phases–elimination, equilibrium and escape. Curr Opin Immunol
47. Gattinoni L, Zhong X-S, Palmer DC, et al: Wnt signaling arrests effector T cell differen- 27:16, 2014.
tiation and generates CD8+ memory stem cells. Nat Med 15:808, 2009. 78. van der Bruggen P, Traversari C, Chomez P, et al: A gene encoding an antigen recog-
48. Wang X, Berger C, Wong CW, et al: Engraftment of human central memory-derived nized by cytolytic T lymphocytes on a human melanoma. Science 254:1643, 1991.
effector CD8+ T cells in immunodeficient mice. Blood 117:1888, 2011. 79. Chen Y-T, Scanlan MJ, Sahin U, et al: A testicular antigen aberrantly expressed in
49. Gattinoni L, Lugli E, Ji Y, et al: A human memory T cell subset with stem cell-like prop- human cancers detected by autologous antibody screening. Proc Natl Acad Sci U S A
erties. Nat Med 17:1290, 2011. 94:1914, 1997.
Kaushansky_chapter 26_p0409-0420.indd 417 9/17/15 6:01 PM

