Page 442 - Williams Hematology ( PDFDrive )
P. 442

416  Part V:  Therapeutic Principles                                      Chapter 26:  Immune Cell Therapy            417




                    19.  Moss P, Rickinson A: Cellular immunotherapy for viral infection after HSC transplan-    50.  Gerlach C, Rohr JC, Perié L, et al: Heterogeneous differentiation patterns of individual
                     tation. Nat Rev Immunol 5:9, 2005.                    CD8+ T cells. Science 340:635, 2013.
                    20.  Terrazzini N, Kern F: Cell-mediated immunity to human CMV infection: A brief over-    51.  Buchholz VR, Flossdorf M, Hensel I, et al: Disparate individual fates compose robust
                     view. F1000Prime Rep 6:28, 2014.                      CD8+ T cell immunity. Science 340:630, 2013.
                    21.  Hanley PJ, Bollard CM: Controlling cytomegalovirus: Helping the immune system take     52.  Graef P, Buchholz VR, Stemberger C, et al: Serial transfer of single-cell-derived immu-
                     the lead. Viruses 6:2242, 2014.                       nocompetence reveals stemness of CD8+ central memory T cells. Immunity 41:116,
                    22.  Simon CO, Holtappels R, Tervo HM, et al: CD8 T cells control cytomegalovirus latency   2014.
                     by epitope-specific sensing of transcriptional reactivation. J Virol 80:10436, 2006.    53.  Stemberger C, Graef P, Odendahl M, et al: Lowest numbers of primary CD8+ T cells
                    23.  Sacre K, Nguyen S, Deback C, et al: Expansion of human cytomegalovirus (HCMV)   can reconstitute protective immunity upon adoptive immunotherapy. Blood 124:628,
                     immediate-early 1-specific CD8+ T cells and control of HCMV replication after alloge-  2014.
                     neic stem cell transplantation. J Virol 82:10143, 2008.    54.  Stemberger C, Dreher S, Tschulik C, et al: Novel serial positive enrichment technology
                    24.  Fuhrmann S, Streitz M, Reinke P, et al: T cell response to the cytomegalovirus major   enables clinical multiparameter cell sorting. PLoS One 7:e35798, 2012.
                     capsid protein (UL86) is dominated by helper cells with a large polyfunctional compo-    55.  Yin Y, Manoury B, Fåhraeus R: Self-inhibition of synthesis and antigen presentation by
                     nent and diverse epitope recognition. J Infect Dis 197:1455, 2008.  Epstein-Barr virus-encoded EBNA1. Science 301:1371, 2003.
                    25.  Crompton L, Khan N, Khanna R, et al: CD4+ T cells specific for glycoprotein B from     56.  Thorley-Lawson DA, Gross A: Persistence of the Epstein-Barr virus and the origins of
                     cytomegalovirus exhibit extreme conservation of T-cell receptor usage between differ-  associated lymphomas. N Engl J Med 350:1328, 2004.
                     ent individuals. Blood 111:2053, 2008.               57.  Annels NE, Callan MFC, Tan L, et al: Changing patterns of dominant TCR usage with
                    26.  Riddell SR, Watanabe KS, Goodrich JM, et al: Restoration of viral immunity in immu-  maturation of an EBV-specific cytotoxic T cell response. J Immunol 165:4831, 2000.
                     nodeficient humans by the adoptive transfer of T cell clones. Science 257:238, 1992.    58.  Amyes E, Hatton C, Montamat-Sicotte D, et al: Characterization of the CD4+ T cell
                    27.  Walter EA, Greenberg PD, Gilbert MJ, et al: Reconstitution of cellular immunity against   response to Epstein-Barr virus during primary and persistent infection.  J Exp Med
                     cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones   198:903, 2003.
                     from the donor. N Engl J Med 333:1038, 1995.         59.  Rickinson AB, Long HM, Palendira U, et al: Cellular immune controls over Epstein-
                    28.  Peggs KS, Verfuerth S, Pizzey A, et al: Adoptive cellular therapy for early cytomegalovirus   Barr virus infection: New lessons from the clinic and the laboratory. Trends Immunol
                     infection after allogeneic stem-cell transplantation with virus-specific T-cell lines. Lancet   35:159, 2014.
                     362:1375, 2003.                                      60.  Adhikary D, Behrends U, Boerschmann H, et al: Immunodominance of lytic cycle anti-
                    29.  Kleihauer A, Grigoleit U, Hebart H, et al: Ex vivo generation of human cytomegalovi-  gens in Epstein-Barr virus-specific CD4+ T cell preparations for therapy. PLoS One
                     rus-specific cytotoxic T cells by peptide-pulsed dendritic cells. Br J Haematol 113:231,   2:e583, 2007.
                     2001.                                                61.  Curtis RE, Travis LB, Rowlings PA, et al: Risk of lymphoproliferative disorders after
                    30.  Micklethwaite KP, Clancy L, Sandher U, et al: Prophylactic infusion of cytomegalovirus-   bone marrow transplantation: A multi-institutional study. Blood 94:2208, 1999.
                     specific cytotoxic T lymphocytes stimulated with Ad5f35pp65 gene-modified dendritic     62.  Meij P, van Esser JWJ, Niesters HGM, et al: Impaired recovery of Epstein-Barr virus
                     cells after allogeneic hemopoietic stem cell transplantation. Blood 112:3974, 2008.  (EBV)-specific CD8+ T lymphocytes after partially T-depleted allogeneic stem cell
                    31.  Leen AM, Myers GD, Sili U, et al: Monoculture-derived T lymphocytes specific for mul-  transplantation may identify patients at very high risk for progressive EBV reactivation
                     tiple viruses expand and produce clinically relevant effects in immunocompromised   and lymphoproliferative disease. Blood 101:4290, 2003.
                     individuals. Nat Med 12:1160, 2006.                  63.  Kuehnle I, Huls MH, Liu Z, et al: CD20 monoclonal antibody (rituximab) for therapy
                    32.  Einsele H, Roosnek E, Rufer N, et al: Infusion of cytomegalovirus (CMV)-specific T   of Epstein-Barr virus lymphoma after hemopoietic stem-cell transplantation.  Blood
                     cells for the treatment of CMV infection not responding to antiviral chemotherapy.   95:1502, 2000.
                     Blood 99:3916, 2002.                                 64.  Papadopoulos EB, Ladanyi M, Emanuel D, et al: Infusions of donor leukocytes to treat
                   33.  Keenan RD, Ainsworth J, Khan N, et al: Purification of cytomegalovirus-specific CD8   Epstein-Barr-virus-associated lymphoproliferative disorders after allogeneic bone mar-
                     T cells from peripheral blood using HLA-peptide tetramers. Br J Haematol 115:428,   row transplantation. N Engl J Med 330:1185, 1994.
                     2001.                                                65.  Rooney CM, Smith CA, Ng CYC, et al: Use of gene-modified virus-specific T lympho-
                    34.  Knabel M, Franz TJ, Schiemann M, et al: Reversible MHC multimer staining for func-  cytes to control Epstein-Barr-virus-related lymphoproliferation. Lancet 345:9, 1995.
                     tional isolation of T-cell populations and effective adoptive transfer. Nat Med 8:631,     66.  Gottschalk S, Edwards OL, Sili U, et al: Generating CTLs against the subdominant
                     2002.                                                 Epstein-Barr virus LMP1 antigen for the adoptive immunotherapy of EBV-associated
                    35.  Cobbold M, Khan N, Pourgheysari B, et al: Adoptive transfer of cytomegalovirus-specific   malignancies. Blood 101:1905, 2003.
                     CTL to stem cell transplant patients after selection by HLA-peptide tetramers. J Exp     67.  Rooney CM, Smith CA, Ng CYC, et al: Infusion of cytotoxic T cells for the prevention
                     Med 202:379, 2005.                                    and treatment of Epstein-Barr virus-induced lymphoma in allogeneic transplant recip-
                    36.  Schmitt A, Tonn T, Busch DH, et al: Adoptive transfer and selective reconstitution of   ients. Blood 92:1549, 1998.
                     streptamer-selected cytomegalovirus-specific CD8+ T cells leads to virus clearance in     68.  Heslop HE, Slobod KS, Pule MA, et al: Long term outcome of EBV specific T-cell infu-
                     patients after allogeneic peripheral blood stem cell transplantation. Transfusion 51:591,   sions to prevent or treat EBV-related lymphoproliferative disease in transplant recipi-
                     2011.                                                 ents. Blood 115:925, 2010.
                    37.  Becker C, Pohla H, Frankenberger B, et al: Adoptive tumor therapy with T lymphocytes     69.  Styczynski J, Reusser P, Einsele H, et al: Management of HSV, VZV and EBV infections
                     enriched through an IFN-γ capture assay. Nat Med 7:1159, 2001.  in patients with hematological malignancies and after SCT: Guidelines from the Sec-
                    38.  Rauser G, Einsele H, Sinzger C, et al: Rapid generation of combined CMV-specific   ond European Conference on Infections in Leukemia. Bone Marrow Transplant 43:757,
                     CD4+ and CD8+ T-cell lines for adoptive transfer into allogeneic stem cell transplant   2008.
                     recipients. Blood 103:3565, 2004.                    70.  Leen AM, Bollard CM, Myers GD, et al: Adenoviral infections in hematopoietic stem
                    39.  Wolfl M, Kuball J, Ho WY, et al: Activation-induced expression of CD137 permits   cell transplantation. Biol Blood Marrow Transplant 12:243, 2006.
                     detection, isolation, and expansion of full repertoire of CD8+ T cells responding to     71.  Chakrabarti S, Mautner V, Osman H, et al: Adenovirus infections following allogeneic
                     antigen without requiring knowledge of epitope specificities. Blood 110:201, 2007.  stem cell transplantation: Incidence and outcome in relation to graft manipulation,
                    40.  Feuchtinger T, Opherk K, Bethge WA, et al: Adoptive transfer of pp65-specific T cells   immunosuppression, and immune recovery. Blood 100:1619, 2002.
                     for the treatment of chemorefractory cytomegalovirus disease or reactivation after hap-    72.  Hanley PJ, Cruz CRY, Savoldo B, et al: Functionally active virus-specific T-cells that
                     loidentical and matched unrelated stem cell transplantation. Blood 116:4360, 2010.  target CMV, adenovirus and EBV can be expanded from naïve T-cell populations in
                    41.  Robins HS, Srivastava SK, Campregher PV, et al: Overlap and effective size of the   cord blood and will target a range of viral epitopes. Blood 114:1958, 2009.
                     human CD8+ T cell receptor repertoire. Sci Transl Med 2:47ra64, 2010.    73.  Gerdemann U, Katari UL, Papadopoulou A, et al: Safety and clinical efficacy of rapidly-
                    42.  Robins H, Desmarais C, Matthis J, et al: Ultra-sensitive detection of rare T cell clones. J   generated trivirus-directed T cells as treatment for adenovirus, EBV, and CMV infec-
                     Immunol Methods 375:14, 2012.                         tions after allogeneic hematopoietic stem cell transplant. Mol Ther 21:2113, 2013.
                    43.  Sallusto F, Geginat J, Lanzavecchia A: Central memory and effector memory T cell sub-    74.  Papadopoulou A, Gerdemann U, Katari UL, et al: Activity of broad-spectrum T cells as
                     sets: Function, generation, and maintenance. Annu Rev Immunol 22:745, 2004.  treatment for AdV, EBV, CMV, BKV, and HHV6 infections after HSCT. Sci Transl Med
                    44.  Hertoghs KML, Moerland PD, van Stijn A, et al: Molecular profiling of cytomegalovirus-   6:242ra83, 2014.
                     induced human CD8+ T cell differentiation. J Clin Invest 120:4077, 2010.    75.  Koebel CM, Vermi W, Swann JB, et al: Adaptive immunity maintains occult cancer in
                    45.  Farber DL, Yudanin NA, Restifo NP: Human memory T cells: Generation, compart-  an equilibrium state. Nature 450:903, 2007.
                     mentalization and homeostasis. Nat Rev Immunol 14:24, 2014.    76.  Matsushita H, Vesely MD, Koboldt DC, et al: Cancer exome analysis reveals a T-cell-
                    46.  Berger C, Jensen MC, Lansdorp PM, et al: Adoptive transfer of effector CD8+ T cells   dependent mechanism of cancer immunoediting. Nature 482:400, 2012.
                     derived from central memory cells establishes persistent T cell memory in primates. J     77.  Mittal D, Gubin MM, Schreiber RD, et al: New insights into cancer immunoediting and
                     Clin Invest 118:294, 2008.                            its three component phases–elimination, equilibrium and escape. Curr Opin Immunol
                    47.  Gattinoni L, Zhong X-S, Palmer DC, et al: Wnt signaling arrests effector T cell differen-  27:16, 2014.
                     tiation and generates CD8+ memory stem cells. Nat Med 15:808, 2009.    78.  van der Bruggen P, Traversari C, Chomez P, et al: A gene encoding an antigen recog-
                    48.  Wang X, Berger C, Wong CW, et al: Engraftment of human central memory-derived   nized by cytolytic T lymphocytes on a human melanoma. Science 254:1643, 1991.
                     effector CD8+ T cells in immunodeficient mice. Blood 117:1888, 2011.    79.  Chen Y-T, Scanlan MJ, Sahin U, et al: A testicular antigen aberrantly expressed in
                    49.  Gattinoni L, Lugli E, Ji Y, et al: A human memory T cell subset with stem cell-like prop-  human cancers detected by autologous antibody screening. Proc Natl Acad Sci U S A
                     erties. Nat Med 17:1290, 2011.                        94:1914, 1997.







          Kaushansky_chapter 26_p0409-0420.indd   417                                                                   9/17/15   6:01 PM
   437   438   439   440   441   442   443   444   445   446   447