Page 444 - Williams Hematology ( PDFDrive )
P. 444
418 Part V: Therapeutic Principles Chapter 26: Immune Cell Therapy 419
142. Ochsenreither S, Majeti R, Schmitt T, et al: Cyclin-A1 represents a new immunogenic 173. Ritchie DS, Neeson PJ, Khot A, et al: Persistence and efficacy of second generation
targetable antigen expressed in acute myeloid leukemia stem cells with characteristics CAR T cell against the LeY antigen in acute myeloid leukemia. Mol Ther 21:2122,
of a cancer-testis antigen. Blood 119:5492, 2012. 2013.
143. Menssen HD, Renkl HJ, Entezami M, et al: Wilms’ tumor gene expression in human 174. Casucci M, Nicolis di Robilant B, Falcone L, et al: CD44v6-targeted T cells mediate
CD34+ hematopoietic progenitors during fetal development and early clonogenic potent antitumor effects against acute myeloid leukemia and multiple myeloma. Blood
growth. Blood 89:3486, 1997. 122:3461, 2013.
144. Gao L, Bellantuono I, Elsässer A, et al: Selective elimination of leukemic CD34+ pro- 175. Dutour A, Martin V, Pizzitola I, et al: In vitro and in vivo antitumor effect of anti-CD33
genitor cells by cytotoxic T lymphocytes specific for WT1. Blood 95:2198, 2000. chimeric receptor-expressing EBV-CTL against CD33 acute myeloid leukemia. Adv
145. Rezvani K, Yong ASM, Savani BN, et al: Graft-versus-leukemia effects associated with Immunol 2012:683065, 2012.
detectable Wilms tumor-1–specific T lymphocytes after allogeneic stem-cell transplan- 176. Pizzitola I, Anjos-Afonso F, Rouault-Pierre K, et al: Chimeric antigen receptors against
tation for acute lymphoblastic leukemia. Blood 110:1924, 2007. CD33/CD123 antigens efficiently target primary acute myeloid leukemia cells in vivo.
146. Chapuis AG, Ragnarsson GB, Nguyen HN, et al: Transferred WT1-reactive CD8+ Leukemia 28:1596, 2014.
T cells can mediate antileukemic activity and persist in post-transplant patients. Sci 177. Gill S, Tasian SK, Ruella M, et al: Preclinical targeting of human acute myeloid leukemia
Transl Med 5:174ra27, 2013. and myeloablation using chimeric antigen receptor–modified T cells. Blood 123:2343,
147. Cooper LJN, Kalos M, Lewinsohn DA, et al: Transfer of specificity for human immu- 2014.
nodeficiency virus type 1 into primary human T lymphocytes by introduction of T-cell 178. Sentman CLP, Meehan KRM: NKG2D CARs as cell therapy for cancer. Cancer J 20:156,
receptor genes. J Virol 74:8207, 2000. 2014.
148. van Loenen MM, de Boer R, Hagedoorn RS, et al: Optimization of the HA-1-specific 179. Carpenter RO, Evbuomwan MO, Pittaluga S, et al: B-cell maturation antigen is a prom-
T-cell receptor for gene therapy of hematologic malignancies. Haematologica 96:477, ising target for adoptive T-cell therapy of multiple myeloma. Clin Cancer Res 19:2048,
2011. 2013.
149. Morgan RA, Dudley ME, Wunderlich JR, et al: Cancer regression in patients after trans- 180. Till BG, Jensen MC, Wang J, et al: Adoptive immunotherapy for indolent non-Hodgkin
fer of genetically engineered lymphocytes. Science 314:126, 2006. lymphoma and mantle cell lymphoma using genetically modified autologous CD20-
150. Bendle GM, Linnemann C, Hooijkaas AI, et al: Lethal graft-versus-host disease in specific T cells. Blood 112:2261, 2008.
mouse models of T cell receptor gene therapy. Nat Med 16:565, 2010. 181. Till BG, Jensen MC, Wang J, et al: CD20-specific adoptive immunotherapy for lym-
151. Cohen CJ, Li YF, El-Gamil M, et al: Enhanced antitumor activity of T cells engineered phoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: Pilot
to express T-cell receptors with a second disulfide bond. Cancer Res 67:3898, 2007. clinical trial results. Blood 119:3940, 2012.
152. Kuball J, Dossett ML, Wolfl M, et al: Facilitating matched pairing and expression of 182. Grupp SA, Kalos M, Barrett D, et al: Chimeric antigen receptor–modified T cells for
TCR-chains introduced into human T-cells. Blood 109:2331, 2007. acute lymphoid leukemia. N Engl J Med 368:1509, 2013.
153. Cohen CJ, Zhao Y, Zheng Z, et al: Enhanced antitumor activity of murine-human 183. Brentjens RJ, Davila ML, Riviere I, et al: CD19-targeted T cells rapidly induce molecular
hybrid T-cell receptor (TCR) in human lymphocytes is associated with improved pair- remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci
ing and TCR/CD3 stability. Cancer Res 66:8878, 2006. Transl Med 5:177ra38, 2013.
154. Provasi E, Genovese P, Lombardo A, et al: Editing T cell specificity towards leukemia by 184. Kochenderfer JN, Rosenberg SA: Treating B-cell cancer with T cells expressing
zinc finger nucleases and lentiviral gene transfer. Nat Med 18:807, 2012. anti-CD19 chimeric antigen receptors. Nat Rev Clin Oncol 10:267, 2013.
155. Bunse M, Bendle GM, Linnemann C, et al: RNAi-mediated TCR knockdown prevents 185. Cruz CR, Micklethwaite KP, Savoldo B, et al: Infusion of donor-derived CD19-
autoimmunity in mice caused by mixed TCR dimers following TCR gene transfer. Mol redirected virus-specific T cells for B-cell malignancies relapsed after allogeneic stem
Ther 22:1983, 2014. cell transplant: A phase 1 study. Blood 122:2965, 2013.
156. Kirchgessner H, Dietrich J, Scherer J, et al: The transmembrane adaptor protein TRIM 186. Pule MA, Savoldo B, Myers GD, et al: Virus-specific T cells engineered to coexpress
regulates T cell receptor (TCR) Expression and TCR-mediated signaling via an associ- tumor-specific receptors: Persistence and antitumor activity in individuals with neuro-
ation with the TCRζ Chain. J Exp Med 193:1269, 2001. blastoma. Nat Med 14:1264, 2008.
157. Johnson LA, Morgan RA, Dudley ME, et al: Gene therapy with human and mouse T 187. Beatty GL, Haas AR, Maus MV, et al: Mesothelin-specific chimeric antigen receptor
cell receptors mediates cancer regression and targets normal tissues expressing cognate mRNA-engineered T cells induce antitumor activity in solid malignancies. Cancer
antigen. Blood 114:535, 2009. Immunol Res 2:112, 2014.
158. Linette GP, Stadtmauer EA, Maus MV, et al: Cardiovascular toxicity and titin cross- 188. Morgan RA, Yang JC, Kitano M, et al: Case report of a serious adverse event following
reactivity of affinity enhanced T cells in myeloma and melanoma. Blood 122:863, the administration of T cells transduced with a chimeric antigen receptor recognizing
2013. ERBB2. Mol Ther 18:843, 2010.
159. Cameron BJ, Gerry AB, Dukes J, et al: Identification of a titin-derived HLA-A1– 189. Lamers CHJ, Sleijfer S, Vilto AG, et al: Treatment of metastatic renal cell carcinoma
presented peptide as a cross-reactive target for engineered MAGE A3–directed T cells. with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX:
Sci Transl Med 5:197ra103, 2013. First clinical experience. J Clin Oncol 24:e20-e22, 2006.
160. Morgan RA, Chinnasamy N, Abate-Daga D, et al: Cancer regression and neurological 190. Lamers CH, Sleijfer S, van Steenbergen S, et al: Treatment of metastatic renal cell car-
toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother 36:133, 2013. cinoma with CAIX CAR-engineered T cells: Clinical evaluation and management of
161. Parkhurst MR, Yang JC, Langan RC, et al: T cells targeting carcinoembryonic antigen on-target toxicity. Mol Ther 21:904, 2013.
can mediate regression of metastatic colorectal cancer but induce severe transient coli- 191. Kalos M, Levine BL, Porter DL, et al: T cells with chimeric antigen receptors have
tis. Mol Ther 19:620, 2011. potent antitumor effects and can establish memory in patients with advanced leukemia.
162. Robbins PF, Morgan RA, Feldman SA, et al: Tumor regression in patients with meta- Sci Transl Med 3:95ra73, 2011.
static synovial cell sarcoma and melanoma using genetically engineered lymphocytes 192. Davila ML, Riviere I, Wang X, et al: Efficacy and toxicity management of 19-28z CAR T
reactive with NY-ESO-1. J Clin Oncol 29:917, 2011. cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med 6:224ra25, 2014.
163. Turtle CJ, Hudecek M, Jensen MC, et al: Engineered T cells for anti-cancer therapy. 193. Lee DW, Gardner R, Porter DL, et al: Current concepts in the diagnosis and manage-
Curr Opin Immunol 24:633, 2012. ment of cytokine release syndrome. Blood 124:188, 2014.
164. Riddell SR, Jensen MC, June CH: Chimeric antigen receptor-modified T cells: Clini- 194. Terakura S, Yamamoto TN, Gardner RA, et al: Generation of CD19-chimeric antigen
cal translation in stem cell transplantation and beyond. Biol Blood Marrow Transplant receptor modified CD8+ T cells derived from virus-specific central memory T cells.
19:52, 2013. Blood 119:72, 2012.
165. Sadelain M, Rivière I, Brentjens RJ: Targeting tumours with genetically enhanced T 195. Abate-Daga D, Lagisetty KH, Tran E, et al: A novel chimeric antigen receptor against
lymphocytes. Nat Rev Cancer 3:35, 2003. prostate stem cell antigen mediates tumor destruction in a humanized mouse model of
166. Brentjens RJ, Santos E, Nikhamin Y, et al: Genetically targeted T cells eradicate systemic pancreatic cancer. Hum Gene Ther 25:1003, 2014.
acute lymphoblastic leukemia xenografts. Clin Cancer Res 13:5426, 2007. 196. Kandalaft L, Powell D, Coukos G: A phase I clinical trial of adoptive transfer of folate
167. Kalos M, June CH: Adoptive T cell transfer for cancer immunotherapy in the era of receptor-alpha redirected autologous T cells for recurrent ovarian cancer. J Transl Med
synthetic biology. Immunity 39:49, 2013. 10:157, 2012.
168. Maus MV, Grupp SA, Porter DL, et al: Antibody modified T cells: CARs take the front 197. Tran E, Chinnasamy D, Yu Z, et al: Immune targeting of fibroblast activation protein
seat for hematologic malignancies. Blood 123:2625, 2014. triggers recognition of multipotent bone marrow stromal cells and cachexia. J Exp Med
169. Wang J, Jensen M, Lin Y, et al: Optimizing adoptive polyclonal T cell immunotherapy 210:1125, 2013.
of lymphomas, using a chimeric T cell receptor possessing CD28 and CD137 costimu- 198. van der Stegen SJC, Davies DM, Wilkie S, et al: Preclinical in vivo modeling of cytokine
latory domains. Hum Gene Ther 18:712, 2007. release syndrome induced by ErbB-retargeted human T cells: Identifying a window of
170. Hudecek M, Schmitt TM, Baskar S, et al: The B-cell tumor associated antigen ROR1 can therapeutic opportunity? J Immunol 191:4589, 2013.
be targeted with T cells modified to express a ROR1-specific chimeric antigen receptor. 199. Berger C, Berger M, Anderson DE, et al: A non-human primate model for analysis of
Blood 116:4532, 2010. safety, persistence, and function of adoptively transferred T cells. J Med Primatol 40:88,
171. Hudecek M, Lupo-Stanghellini MT, Kosasih PL, et al: Receptor affinity and extracellu- 2011.
lar domain modifications affect tumor recognition by ROR1-specific chimeric antigen 200. Riley JL: Combination checkpoint blockade—taking melanoma immunotherapy to the
receptor T cells. Clin Cancer Res 19:3153, 2013. next level. N Engl J Med 369:187, 2013.
172. Borcherding N, Kusner D, Liu GH, et al: ROR1, an embryonic protein with an emerging 201. Wolchok JD, Kluger H, Callahan MK, et al: Nivolumab plus ipilimumab in advanced
role in cancer biology. Protein Cell 5:496, 2014. melanoma. N Engl J Med 369:122, 2013.
Kaushansky_chapter 26_p0409-0420.indd 419 9/17/15 6:01 PM

