Page 443 - Williams Hematology ( PDFDrive )
P. 443

418            Part V:  Therapeutic Principles                                                                                                                                        Chapter 26:  Immune Cell Therapy             419




                 80.  Drake CG, Jaffee E, Pardoll DM: Mechanisms of immune evasion by tumors.  Adv     112. Schluns KS, Lefrançois L: Cytokine control of memory T-cell development and sur-
                  Immunol 90:51, 2006.                                   vival. Nat Rev Immunol 3:269, 2003.
                 81.  Ahmadzadeh M, Johnson LA, Heemskerk B, et al: Tumor antigen–specific CD8 T cells     113. Chapuis AG, Thompson JA, Margolin KA, et al: Transferred melanoma-specific CD8+
                  infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood   T cells persist, mediate tumor regression, and acquire central memory phenotype. Proc
                  114:1537, 2009.                                        Natl Acad Sci U S A 109:4592, 2012.
                 82.  Schietinger A, Greenberg PD: Tolerance and exhaustion: Defining mechanisms of T cell     114. Colombo MP, Piconese S: Regulatory T-cell inhibition versus depletion: The right
                  dysfunction. Trends Immunol 35:51, 2014.               choice in cancer immunotherapy. Nat Rev Cancer 7:880, 2007.
                 83.  Gros A, Robbins PF, Yao X, et al: PD-1 identifies the patient-specific CD8+ tumor-reactive     115. Wrzesinski C, Paulos CM, Gattinoni L, et al: Hematopoietic stem cells promote the
                  repertoire infiltrating human tumors. J Clin Invest 124:2246, 2014.  expansion and function of adoptively transferred antitumor CD8+ T cells. J Clin Invest
                 84.  Dudley ME, Wunderlich J, Nishimura MI, et al: Adoptive transfer of cloned melanoma-   117:492, 2007.
                  reactive T lymphocytes for the treatment of patients with metastatic melanoma.  J     116. Dudley ME, Yang JC, Sherry R, et al: Adoptive cell therapy for patients with metastatic
                  Immunother 24:363, 2001.                               melanoma: Evaluation of intensive myeloablative chemoradiation preparative regi-
                 85.  Park JR, DiGiusto DL, Slovak M, et al: Adoptive transfer of chimeric antigen receptor   mens. J Clin Oncol 26:5233, 2008.
                  re-directed cytolytic T lymphocyte clones in patients with neuroblastoma. Mol Ther     117. Prickett TD, Agrawal NS, Wei X, et al: Analysis of the tyrosine kinome in melanoma
                  15:825, 2007.                                          reveals recurrent mutations in ERBB4. Nat Genet 41:1127, 2009.
                 86.  Yee C, Thompson JA, Roche P, et al: Melanocyte destruction after antigen-specific     118. Kvistborg P, Shu CJ, Heemskerk B, et al: TIL therapy broadens the tumor-reactive CD8+
                  immunotherapy of melanoma: Direct evidence of T cell-mediated vitiligo. J Exp Med   T cell compartment in melanoma patients. Oncoimmunology 1:409, 2012.
                  192:1637, 2000.                                       119. Lu YC, Yao X, Crystal JS, et al: Efficient identification of mutated cancer antigens rec-
                 87.  Kershaw MH, Westwood JA, Parker LL, et al: A phase I study on adoptive immunother-  ognized by T cells associated with durable tumor regressions. Clin Cancer Res 20:3401,
                  apy using gene-modified T cells for ovarian cancer. Clin Cancer Res 12:6106, 2006.  2014.
                 88.  Robbins PF, Dudley ME, Wunderlich J, et al: Cutting edge: Persistence of transferred     120. Tran E, Turcotte S, Gros A, et al: Cancer immunotherapy based on mutation-specific
                  lymphocyte clonotypes correlates with cancer regression in patients receiving cell   CD4+ T cells in a patient with epithelial cancer. Science 344:641, 2014.
                  transfer therapy. J Immunol 173:7125, 2004.           121. Rezvani K, Barrett AJ: Characterizing and optimizing immune responses to leukaemia
                 89.  Rosenberg SA: Progress in human tumour immunology and immunotherapy. Nature   antigens after allogeneic stem cell transplantation. Best Pract Res Clin Haematol 21:437,
                  411:380, 2001.                                         2008.
                 90.  Horowitz MM, Gale RP, Sondel PM, et al: Graft-versus-leukemia reactions after bone     122. Spierings E, Kim YH, Hendriks M, et al: Multicenter analyses demonstrate significant
                  marrow transplantation. Blood 75:555, 1990.            clinical effects of minor histocompatibility antigens on GvHD and GvL after HLA-
                 91.  Kolb H-J, Schmid C, Barrett AJ, et al: Graft-versus-leukemia reactions in allogeneic   matched related and unrelated hematopoietic stem cell transplantation.  Biol Blood
                  chimeras. Blood 103:767, 2004.                         Marrow Transplant 19:1244, 2013.
                 92.  Bleakley M, Turtle CJ, Riddell SR: Augmentation of anti-tumor immunity by adop-    123. Bleakley M, Riddell SR: Molecules and mechanisms of the graft-versus-leukemia effect.
                  tive T-cell transfer after allogeneic hematopoietic stem cell transplantation. Expert Rev   Nat Rev Cancer 4:371, 2004.
                  Hematol 5:409, 2012.                                  124. Fontaine P, Roy-Proulx G, Knafo L, et al: Adoptive transfer of minor histocompatibility
                 93.  Schumacher TNM: T-cell-receptor gene therapy. Nat Rev Immunol 2:512, 2002.  antigen-specific T lymphocytes eradicates leukemia cells without causing graft-versus-
                 94.  Eshhar Z: Tumor-specific T-bodies: Towards chinical application.  Cancer Immunol   host disease. Nat Med 7:789, 2001.
                  Immunother 45:131, 1997.                              125. Warren EH, Greenberg PD, Riddell SR: Cytotoxic T-lymphocyte-defined human minor
                 95.  Jensen MC, Riddell SR: Design and implementation of adoptive therapy with chimeric   histocompatibility antigens with a restricted tissue distribution. Blood 91:2197, 1998.
                  antigen receptor-modified T cells. Immunol Rev 257:127, 2014.    126. Bonnet D, Warren EH, Greenberg PD, et al: CD8+ minor histocompatibility antigen-
                 96.  Barrett DM, Singh N, Porter DL, et al: Chimeric antigen receptor therapy for cancer.   specific cytotoxic T lymphocyte clones eliminate human acute myeloid leukemia stem
                  Annu Rev Med 65:10. 1-10. 15, 2014.                    cells. Proc Natl Acad Sci U S A 96:8639, 1999.
                 97.  Kershaw MH, Westwood JA, Darcy PK: Gene-engineered T cells for cancer therapy.     127. Carlson CS, Eberle MA, Rieder MJ, et al: Additional SNPs and linkage-disequilibrium
                  Nat Rev Cancer 13:525, 2013.                           analyses are necessary for whole-genome association studies in humans.  Nat Genet
                 98.  Rosenberg SA, Yannelli JR, Yang JC, et al: Treatment of patients with metastatic mela-  33:518, 2003.
                  noma with autologous tumor-infiltrating lymphocytes and interleukin 2. J Natl Cancer     128. Spierings E, Hendriks M, Absi L, et al: Phenotype frequencies of autosomal minor his-
                  Inst 86:1159, 1994.                                    tocompatibility antigens display significant differences among populations. PLoS Genet
                 99.  Rosenberg SA: A new era for cancer immunotherapy based on the genes that encode   3:e103, 2007.
                  cancer antigens. Immunity 10:281, 1999.               129. Warren EH, Vigneron NJ, Gavin MA, et al: An antigen produced by splicing of noncon-
                 100. Engelhard VH, Bullock TNJ, Coletta TA, et al: Antigens derived from melanocyte dif-  tiguous peptides in the reverse order. Science 313:1444, 2006.
                  ferentiation proteins: Self-tolerance, autoimmunity, and use for cancer immunotherapy.     130. Oostvogels R, Minnema MC, van Elk M, et al: Towards effective and safe immunother-
                  Immunol Rev 188:136, 2002.                             apy after allogeneic stem cell transplantation: Identification of hematopoietic-specific
                 101. Robbins PF, Lu YC, El-Gamil M, et al: Mining exomic sequencing data to identify   minor histocompatibility antigen UTA2-1. Leukemia 27:642, 2013.
                  mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat Med     131. Marijt WAE, Heemskerk MHM, Kloosterboer FM, et al: Hematopoiesis-restricted
                  19:747, 2013.                                          minor histocompatibility antigens HA-1- or HA-2-specific T cells can induce complete
                 102. Dudley ME, Wunderlich JR, Shelton TE, et al: Generation of tumor-infiltrating lym-  remissions of relapsed leukemia. Proc Natl Acad Sci U S A 100:2742, 2003.
                  phocyte cultures for use in adoptive transfer therapy for melanoma patients. J Immuno-    132. de Rijke B, van Horssen-Zoetbrood A, Beekman JM, et al: A frameshift polymorphism
                  ther 26:332, 2003.                                     in P2X5 elicits an allogeneic cytotoxic T lymphocyte response associated with remis-
                 103. Yee C: The use of endogenous T cells for adoptive transfer. Immunol Rev 257:250, 2014.  sion of chronic myeloid leukemia. J Clin Invest 115:3506, 2005.
                 104. Yee C, Thompson JA, Byrd D, et al: Adoptive T cell therapy using antigen-specific CD8+     133. Randolph SSB, Gooley TA, Warren EH, et al: Female donors contribute to a selective
                  T cell clones for the treatment of patients with metastatic melanoma: In vivo persis-  graft-versus-leukemia effect in male recipients of HLA-matched, related hematopoietic
                  tence, migration, and antitumor effect of transferred cells. Proc Natl Acad Sci U S A   cell transplants. Blood 103:347, 2004.
                  99:16168, 2002.                                       134. Warren EH, Gavin MA, Simpson E, et al: The human UTY gene encodes a novel HLA-
                 105. Dudley ME, Wunderlich JR, Yang JR, et al: A phase I study of nonmyeloablative che-  B8-restricted H-Y antigen. J Immunol 164:2807, 2000.
                  motherapy and adoptive transfer of autologous tumor antigen-specific T lymphocytes     135. Van Elsas A, Nijman HW, Van der Minne CE, et al: Induction and characterization
                  in patients with metastatic melanoma. J Immunother 25:243, 2002.  of cytotoxic T-lymphocytes recognizing a mutated p21ras peptide presented by HLA-
                 106. Gattinoni L, Klebanoff CA, Palmer DC, et al: Acquisition of full effector function in   A*0201. Int J Cancer 61:389, 1995.
                  vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred     136. Bocchia M, Korontsvit T, Xu Q, et al: Specific human cellular immunity to bcr-abl onco-
                  CD8+ T cells. J Clin Invest 115:1616, 2005.            gene-derived peptides. Blood 87:3587, 1996.
                 107. Dudley ME, Wunderlich JR, Robbins PF, et al: Cancer regression and autoimmunity     137. Molldrem J, Dermime S, Parker K, et al: Targeted T-cell therapy for human leukemia:
                  in patients after clonal repopulation with antitumor lymphocytes. Science 298:850,   Cytotoxic T lymphocytes specific for a peptide derived from proteinase 3 preferentially
                  2002.                                                  lyse human myeloid leukemia cells. Blood 88:2450, 1996.
                 108. Hinrichs CS, Rosenberg SA: Exploiting the curative potential of adoptive T-cell therapy     138. Molldrem JJ, Lee PP, Wang C, et al: Evidence that specific T lymphocytes may partici-
                  for cancer. Immunol Rev 257:56, 2014.                  pate in the elimination of chronic myelogenous leukemia. Nat Med 6:1018, 2000.
                 109. Dudley ME, Wunderlich JR, Yang JC, et al: Adoptive cell transfer therapy following     139. Sergeeva A, Alatrash G, He H, et al: An anti-PR1/HLA-A2 T-cell receptor-like antibody
                  non-myeloablative but lymphodepleting chemotherapy for the treatment of patients   mediates complement-dependent cytotoxicity against acute myeloid leukemia progen-
                  with refractory metastatic melanoma. J Clin Oncol 23:2346, 2005.  itor cells. Blood 117:4262, 2011.
                 110. Huang J, Khong HT, Dudley ME, et al: Survival, persistence, and progressive differenti-    140. Bellantuono I, Gao L, Parry S, et al: Two distinct HLA-A0201-presented epitopes of
                  ation of adoptively transferred tumor-rective T cells associated with tumor regression.   the Wilms tumor antigen 1 can function as targets for leukemia-reactive CTL. Blood
                  J Immunother 28:258, 2005.                             100:3835, 2002.
                 111. Rosenberg SA, Yang JC, Sherry RM, et al: Durable complete responses in heavily pre-    141. Doubrovina E, Carpenter T, Pankov D, et al: Mapping of novel peptides of WT-1 and
                  treated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin   presenting HLA alleles that induce epitope-specific HLA-restricted T cells with cyto-
                  Cancer Res 17:4550, 2011.                              toxic activity against WT-1(+) leukemias. Blood 120:1633, 2012.







          Kaushansky_chapter 26_p0409-0420.indd   418                                                                   9/17/15   6:01 PM
   438   439   440   441   442   443   444   445   446   447   448