Page 650 - Williams Hematology ( PDFDrive )
P. 650
624 Part VI: The Erythrocyte Chapter 42: Iron Metabolism 625
G U 21. Fiorito V, Geninatti CS, Silengo L, et al: Lack of plasma protein hemopexin results in
A G increased duodenal iron uptake. PLoS One 8:e68146, 2013.
C C 22. Korolnek T, Hamza I: Like iron in the blood of the people: The requirement for heme
trafficking in iron metabolism. Front Pharmacol 5:126, 2014.
AU 23. Choi J, Masaratana P, Latunde-Dada GO, et al: Duodenal reductase activity and spleen
AU iron stores are reduced and erythropoiesis is abnormal in Dcytb knockout mice
CG exposed to hypoxic conditions. J Nutr 142:1929, 2012.
UG 24. Gunshin H, Mackenzie B, Berger UV, et al: Cloning and characterization of a mamma-
U A lian proton-coupled metalion transporter. Nature 388:482, 1997.
C C 25. Shawki A, Knight PB, Maliken BD, et al: H(+)-coupled divalent metal-ion trans-
G porter-1: Functional properties, physiological roles and therapeutics. Curr Top Membr
70:169, 2012.
U 26. Donovan A, Brownlie A, Zhou Y, et al: Positional cloning of zebrafish ferroportin1
CG identifies a conserved vertebrate iron exporter. Nature 403:776, 2000.
CG 27. McKie AT, Marciani P, Rolfs A, et al: A novel duodenal iron-regulated transporter,
U IREG1, implicated in the basolateral transfer of iron to the circulation. Mol Cell 5:299,
U A 2000.
U A 28. Abboud S, Haile DJ: A novel mammalian iron-regulated protein involved in intracellu-
G C lar iron metabolism. J Biol Chem 275:19906, 2000.
G C 29. Vulpe CD, Kuo YM, Murphy TL, et al: Hephaestin, a ceruloplasmin homologue impli-
G C cated in intestinal iron transport, is defective in the sla mouse. Nat Genet 21:195, 1999.
5 CG UC G G G C G 3 30. Cherukuri S, Potla R, Sarkar J, et al: Unexpected role of ceruloplasmin in intestinal iron
absorption. Cell Metab 2:309, 2005.
–186 –143 31. Noyes WD, Bothwell TH, Finch CA: The role of the reticulo-endothelial cell in iron
metabolism. Br J Haematol 6:43, 1960.
Figure 42–7. The stem–loop structure that is the iron-responsive ele- 32. Haurani FI, Burke W, Martinez EJ: Defective reutilization of iron in the anemia of
inflammation. J Lab Clin Med 65:560, 1965.
ment of apoferritin mRNA. (Reproduced with permission from Hentze MW, 33. O’Shea MJ, Kershenobich D, Tavill AS: Effects of inflammation on iron and transferrin
Caughman SW, Casey JL, et al: A model for the structure and functions of metabolism. Br J Haematol 25:707, 1973.
iron-responsive elements. Gene 72(1–2):201–208, 1988.) 34. Bosman GJCG, Werre JM, Willekens FLA, et al: Erythrocyte ageing in vivo and in vitro:
Structural aspects and implications for transfusion. Transfus Med 18:335, 2008.
35. Beaumont C, Delaby C: Recycling iron in normal and pathological states. Semin Hema-
Persons with marked iron overload, as in hemochromatosis, may lose tol 46:328, 2009.
as much as 4 mg of iron daily, probably because of the shedding of iron- 36. Kovtunovych G, Eckhaus MA, Ghosh MC, et al: Dysfunction of the heme recycling
laden cells, principally macrophages. system in heme oxygenase-1 deficient mice: Effects on macrophage viability and tissue
iron distribution. Blood 116:6054, 2010.
37. Delaby C, Rondeau C, Pouzet C, et al: Subcellular localization of iron and heme
metabolism related proteins at early stages of erythrophagocytosis. PLoS One
REFERENCES 38. White C, Yuan X, Schmidt PJ, et al: HRG1 is essential for heme transport from the
7:e42199, 2012.
1. Arosio P, Levi S: Cytosolic and mitochondrial ferritins in the regulation of cellular iron phagolysosome of macrophages during erythrophagocytosis. Cell Metab 17:261, 2013.
homeostasis and oxidative damage. Biochim Biophys Acta 1800:783, 2010. 39. Soe-Lin S, Apte SS, Andriopoulos B Jr, et al: Nramp1 promotes efficient macrophage
2. Koorts AM, Viljoen M: Ferritin and ferritin isoforms I: Structure–function relation- recycling of iron following erythrophagocytosis in vivo. Proc Natl Acad Sci U S A
ships, synthesis, degradation and secretion. Arch Physiol Biochem 113:30, 2007. 106:5960, 2009.
3. Mancias JD, Wang X, Gygi SP, et al: Quantitative proteomics identifies NCOA4 as the 40. Knutson MD, Oukka M, Koss LM, et al: Iron release from macrophages after erythro-
cargo receptor mediating ferritinophagy. Nature 509:105, 2014. phagocytosis is up-regulated by ferroportin 1 overexpression and down-regulated by
4. Ordway GA, Garry DJ: Myoglobin: An essential hemoprotein in striated muscle. J Exp hepcidin. Proc Natl Acad Sci U S A 102:1324, 2005.
Biol 207:3441, 2004. 41. Cherukuri S, Tripoulas NA, Nurko S, et al: Anemia and impaired stress-induced ery-
5. Hosain F, Marsaglia G, Finch CA: Blood ferrokinetics in normal man. J Clin Invest 46:1, thropoiesis in aceruloplasminemic mice. Blood Cells Mol Dis 33:346, 2004.
1967. 42. Harris ZL, Durley AP, Man TK, et al: Targeted gene disruption reveals an essential role
6. Breuer W, Shvartsman M, Cabantchik ZI: Intracellular labile iron. Int J Biochem Cell for ceruloplasmin in cellular iron efflux. Proc Natl Acad Sci U S A 96:10812, 1999.
Biol 40:350, 2008. 43. Sarkar J, Seshadri V, Tripoulas NA, et al: Role of ceruloplasmin in macrophage iron
7. Dallman PR, Beutler E, Finch CA: Effects of iron deficiency exclusive of anaemia. Br J efflux during hypoxia. J Biol Chem 278:44018, 2003.
Haematol 40:179, 1978. 44. Pigeon C, Ilyin G, Courselaud B, et al: A new mouse liver-specific gene, encoding a
8. Radlowski EC, Johnson RW: Perinatal iron deficiency and neurocognitive develop- protein homologous to human antimicrobial peptide hepcidin, is overexpressed during
ment. Front Hum Neurosci 7:1, 2013. iron overload. J Biol Chem 276:7811, 2001.
9. Cheng Y, Zak O, Aisen P, et al: Structure of the human transferrin receptor-transferrin 45. Park CH, Valore EV, Waring AJ, et al: Hepcidin, a urinary antimicrobial peptide synthe-
complex. Cell 116:565, 2004. sized in the liver. J Biol Chem 276:7806, 2001.
10. Bailey S, Evans RW, Garratt RC, et al: Molecular structure of serum transferrin at 3.3-A 46. Nicolas G, Bennoun M, Devaux I, et al: Lack of hepcidin gene expression and severe
resolution. Biochemistry 27:5804, 1988. tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proc Natl
11. Aisen P, Brown EB: Structure and function of transferrin. Prog Hematol 9:25, 1975. Acad Sci U S A 98:8780, 2001.
12. Thorbecke GJ, Liem HH, Knight S, et al: Sites of formation of the serum proteins trans- 47. Ganz T: Hepcidin and iron regulation, 10 years later. Blood 117:4425, 2011.
ferrin and hemopexin. J Clin Invest 52:725, 1973. 48. Nicolas G, Bennoun M, Porteu A, et al: Severe iron deficiency anemia in transgenic
13. Haurani FI, Meyer A, O’Brien R: Production of transferrin by the macrophage. J Retic- mice expressing liver hepcidin. Proc Natl Acad Sci U S A 99:4596, 2002.
uloendothel Soc 14:309, 1973. 49. Finberg KE, Heeney MM, Campagna DR, et al: Mutations in TMPRSS6 cause iron-
14. Egan SK, Tao SS, Pennington JA, et al: US Food and Drug Administration’s Total Diet refractory iron deficiency anemia (IRIDA). Nat Genet 40:569, 2008.
Study: Intake of nutritional and toxic elements, 1991-96. Food Addit Contam 19:103, 2002. 50. Rivera S, Nemeth E, Gabayan V, et al: Synthetic hepcidin causes rapid dose-dependent
15. Dubach R, Moore CV, Callender S: Studies in iron transportation and metabolism. IX. hypoferremia and is concentrated in ferroportin-containing organs. Blood 106:2196,
The excretion of iron as measured by the isotope technique. J Lab Clin Med 45:599, 1955. 2005.
16. Trumbo P, Yates AA, Schlicker S, Poos M: Dietary reference intakes: Vitamin A, vitamin 51. Nemeth E, Tuttle MS, Powelson J, et al: Hepcidin regulates cellular iron efflux by bind-
K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, ing to ferroportin and inducing its internalization. Science 306:2090, 2004.
silicon, vanadium, and zinc. J Am Diet Assoc 101:294, 2001. 52. Nemeth E, Rivera S, Gabayan V, et al: IL-6 mediates hypoferremia of inflammation by
17. Heath AL, Fairweather T: Clinical implications of changes in the modern diet: Iron inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest 113:1271,
intake, absorption and status. Best Pract Res Clin Haematol 15:225, 2002. 2004.
18. Hurrell R, Egli I: Iron bioavailability and dietary reference values. Am J Clin Nutr 53. Rodriguez R, Jung CL, Gabayan V, et al: Hepcidin induction by pathogens and pathogen-
91:1461S, 2010. derived molecules is strongly dependent on interleukin-6. Infect Immun 82:745, 2014.
19. Cook JD, Reddy MB, Hurrell RF: The effect of red and white wines on nonheme-iron 54. Nicolas G, Chauvet C, Viatte L, et al: The gene encoding the iron regulatory peptide hep-
absorption in humans. Am J Clin Nutr 61:800, 1995. cidin is regulated by anemia, hypoxia, and inflammation. J Clin Invest 110:1037, 2002.
20. Anderson ER, Taylor M, Xue X, et al: The hypoxia-inducible factor-C/EBPalpha axis 55. Nemeth E, Valore EV, Territo M, et al: Hepcidin, a putative mediator of anemia of
controls ethanol-mediated hepcidin repression. Mol Cell Biol 32:4068, 2012. inflammation, is a type II acute-phase protein. Blood 101:2461, 2003.
Kaushansky_chapter 42_p0617-0626.indd 625 9/17/15 6:26 PM

