Page 738 - Williams Hematology ( PDFDrive )
P. 738
712 Part VI: The Erythrocyte Chapter 47: Erythrocyte Enzyme Disorders 713
10. Howes RE, Dewi M, Piel FB, et al: Spatial distribution of G6PD deficiency variants 42. Srivastava SK, Beutler E: Glutathione metabolism of the erythrocyte. The enzymic
across malaria-endemic regions. Malar J 12:418, 2013. cleavage of glutathione-haemoglobin preparations by glutathione reductase. Biochem
11. Howes RE, Battle KE, Satyagraha AW, et al: G6PD deficiency: Global distribution, J 119:353–357, 1970.
genetic variants and primaquine therapy. Adv Parasitol 81:133–201, 2013. 43. Jansen G, Koenderman L, Rijksen G, et al: Age dependent behaviour of red cell glyco-
12. Nkhoma ET, Poole C, Vannappagari V, et al: The global prevalence of glucose-6- lytic enzymes in haematological disorders. Br J Haematol 61:51–59, 1985.
phosphate dehydrogenase deficiency: A systematic review and meta-analysis. Blood 44. Lakomek M, Schröter W, De Maeyer G, et al: On the diagnosis of erythrocyte enzyme
Cells Mol Dis 42:267–278, 2009. defects in the presence of high reticulocyte counts. Br J Haematol 72:445–451,
13. Tishkoff SA, Varkonyi R, Cahinhinan N, et al: Haplotype diversity and linkage disequi- 1989.
librium at human G6PD: Recent origin of alleles that confer malarial resistance. Science 45. Wilson JE: Isozymes of mammalian hexokinase: Structure, subcellular localization and
293:455–462, 2001. metabolic function. J Exp Biol 206:2049–2057, 2003.
14. Luzzatto L, Usanga EA, Reddy S: Glucose 6-phosphate dehydrogenase deficient red 46. Cárdenas ML, Cornish-Bowden A, Ureta T: Evolution and regulatory role of the hexok-
cells: Resistance to infection by malarial parasites. Science 164:839–842, 1969. inases. Biochim Biophys Acta 1401:242-264, 1998.
15. Cappadoro M, Giribaldi G, O’Brien E, et al: Early phagocytosis of glucose-6-phosphate 47. Fujii S, Beutler E: High glucose concentrations partially release hexokinase from inhi-
dehydrogenase (G6PD)-deficient erythrocytes parasitized by plasmodium falciparum bition by glucose-6-phosphate. Proc Natl Acad Sci U S A 82:1552–1554, 1985.
may explain malaria protection in G6PD deficiency. Blood 92:2527–2534, 1998. 48. Gerber G, Kloppick E, Rapoport S: Öber den Einfluss des Anorganischen Phosphats
16. Luzzatto L: G6PD deficiency and malaria selection. Heredity (Edinb) 108: 456, 2012. auf die Glykolyse; seine Unwirksamkeit auf die Hexokinase des Menschenerythrozyten.
17. Clark TG, Fry AE, Auburn S, et al: Allelic heterogeneity of G6PD deficiency in West Acta Biol Med Ger 18:305–312, 1967.
Africa and severe malaria susceptibility. Eur J Hum Genet 17:1080–1085, 2009. 49. Beutler E, Teeple L: The effect of oxidized glutathione (GSSG) on human erythrocyte
18. Guindo A, Fairhurst RM, Doumbo OK, et al: X-linked G6PD deficiency protects hexokinase activity. Acta Biol Med Ger 22:707–711, 1969.
hemizygous males but not heterozygous females against severe malaria. PLoS Med 50. Beutler E: 2,3-Diphosphoglycerate affects enzymes of glucose metabolism in red blood
4:e66, 2007. cells. Nat New Biol 232:20–21, 1971.
19. Bienzle U, Ayeni O, Lucas AO, et al: Glucose-6-phosphate dehydrogenase and malaria. 51. Mulichak AM, Wilson JE, Padmanabhan K, et al: The structure of mammalian hexoki-
Greater resistance of females heterozygous for enzyme deficiency and of males with nase-1. Nat Struct Biol 5:555–560, 1998.
non-deficient variant. Lancet 1:107–110, 1972. 52. Aleshin AE, Kirby C, Liu X, et al: Crystal structures of mutant monomeric hexokinase
20. Piomelli S, Reindorf CA, Arzanian MT, et al: Clinical and biochemical interactions of I reveal multiple ADP binding sites and conformational changes relevant to allosteric
glucose-6-phosphate dehydrogenase deficiency and sickle-cell anemia. N Engl J Med regulation. J Mol Biol 296:1001–1015, 2000.
287:213–217, 1972. 53. Murakami K, Blei F, Tilton W, et al: An isozyme of hexokinase specific for the human
21. Gibbs WN, Wardle J, Serjeant GR: Glucose-6-phosphate dehydrogenase deficiency and red blood cell (HK ). Blood 75:770–775, 1990.
R
homozygous sickle cell disease in Jamaica. Br J Haematol 45:73–80, 1980. 54. Ruzzo A, Andreoni F, Magnani M: Structure of the human hexokinase type I gene and
22. Steinberg MH, West MS, Gallagher D, et al: Effects of glucose-6-phosphate dehydroge- nucleotide sequence of the 5′ flanking region. Biochem J 331:607–613, 1998.
nase deficiency upon sickle cell anemia. Blood 71:748–752, 1988. 55. Magnani M, Serafini G, Stocchi V: Hexokinase type I multiplicity in human erythro-
23. Benkerrou M, Alberti C, Couque N, et al: Impact of glucose-6-phosphate dehydroge- cytes. Biochem J 254:617–620, 1988.
nase deficiency on sickle cell anaemia expression in infancy and early childhood: A 56. Andreoni F, Ruzzo A, Magnani M: Structure of the 5′ region of the human hexokinase
prospective study. Br J Haematol 163:646–654, 2013. type I (HKI) gene and identification of an additional testis-specific HKI mRNA. Bio-
24. Nouraie M, Reading NS, Campbell A, et al: Association of G6PD with lower haemoglo- chim Biophys Acta 1493:19–26, 2000.
bin concentration but not increased haemolysis in patients with sickle cell anaemia. Br 57. Hantke J, Chandler D, King R, et al: A mutation in an alternative untranslated exon
J Haematol 150:218–225, 2010. of hexokinase 1 associated with hereditary motor and sensory neuropathy–Russe
25. Beutler E, Gelbart T: Estimating the prevalence of pyruvate kinase deficiency from the (HMSNR). Eur J Hum Genet 17:1606–1614, 2009.
gene frequency in the general white population. Blood 95:3585–3588, 2000. 58. Murakami K, Kanno H, Miwa S, et al: Human HK isozyme: Organization of the hex-
R
26. Mohrenweiser HW: Functional hemizygosity in the human genome: Direct estimate okinase I gene, the erythroid-specific promoter, and transcription initiation site. Mol
from twelve erythrocyte enzyme loci. Hum Genet 77:241–245, 1987. Genet Metab 67:118–130, 1999.
27. Watanabe M, Zingg BC, Mohrenweiser HW: Molecular analysis of a series of alleles in 59. Murakami K, Piomelli S: Identification of the cDNA for human red blood cell-specific
humans with reduced activity at the triosephosphate isomerase locus. Am J Hum Genet hexokinase isozyme. Blood 89:762–766, 1997.
58:308–316, 1996. 60. Bonnefond A, Vaxillaire M, Labrune Y, et al: Genetic variant in HK1 is associated
28. Baronciani L, Beutler E: Analysis of pyruvate kinase-deficiency mutations that produce with a proanemic state and A1C but not other glycemic control-related traits. Diabetes
nonspherocytic hemolytic anemia. Proc Natl Acad Sci U S A 90:4324–4327, 1993. 58:2687–2697, 2009.
29. Lenzner C, Nurnberg P, Jacobasch G, et al: Molecular analysis of 29 pyruvate kinase- 61. Read J, Pearce J, Li X, et al: The crystal structure of human phosphoglucose isomerase
deficient patients from central Europe with hereditary hemolytic anemia. Blood at 1.6 A resolution: Implications for catalytic mechanism, cytokine activity and haemo-
89:1793–1799, 1997. lytic anaemia. J Mol Biol 309:447–463, 2001.
30. Manco L, Abade A: Pyruvate kinase deficiency: Prevalence of the 1456C→T mutation in 62. Somarowthu S, Brodkin HR, D’Aquino JA, et al: A tale of two isomerases: Compact
the Portuguese population. Clin Genet 60:472–473, 2001. versus extended active sites in ketosteroid isomerase and phosphoglucose isomerase.
31. Zanella A, Bianchi P: Red cell pyruvate kinase deficiency: From genetics to clinical Biochemistry 50:9283–9295, 2011.
manifestations. Baillieres Best Pract Res Clin Haematol 13:57–81, 2000. 63. Xu W, Lee P, Beutler E: Human glucose phosphate isomerase: Exon mapping and gene
32. Schneider A, Westwood B, Yim C, et al: The 1591C mutation in triosephosphate structure. Genomics 29:732–739, 1995.
isomerase (TPI) deficiency. Tightly linked polymorphisms and a common haplotype in 64. Sola-Penna M, Da Silva D, Coelho WS, et al: Regulation of mammalian muscle type
all known families. Blood Cells Mol Dis 22:115–125, 1996. 6-phosphofructo-1-kinase and its implication for the control of the metabolism.
33. Sherman JB, Raben N, Nicastri C, et al: Common mutations in the phosphofructoki- IUBMB Life 62:791–796, 2010.
nase-M gene in Ashkenazi Jewish patients with glycogenesis VII—and their population 65. Schöneberg T, Kloos M, Brüser A, et al: Structure and allosteric regulation of eukaryotic
frequency. Am J Hum Genet 55:305–313, 1994. 6-phosphofructokinases. Biol Chem 394:977–993, 2013.
34. Montel-Hagen A, Kinet S, Manel N, et al: Erythrocyte Glut1 triggers dehydroascor- 66. Costa Leite T, Da Silva D, Guimaraes Coelho R, et al: Lactate favours the dissociation of
bic acid uptake in mammals unable to synthesize vitamin C. Cell 132:1039–1048, skeletal muscle 6-phosphofructo-1-kinase tetramers down-regulating the enzyme and
2008. muscle glycolysis. Biochem J 408:123–130, 2007.
35. Rosa R, Gaillardon J, Rosa J: Diphosphoglycerate mutase and 2,3-diphosphoglycerate 67. Marinho-Carvalho MM, Costa-Mattos PV, Spitz GA, et al: Calmodulin upregulates
phosphatase activities of red cells: Comparative electrophoretic study. Biochem Biophys skeletal muscle 6-phosphofructo-1-kinase reversing the inhibitory effects of allosteric
Res Commun 51:536–542, 1973. modulators. Biochim Biophys Acta 1794:1175–1180, 2009.
36. Cho J, King JS, Qian X, et al: Dephosphorylation of 2,3-bisphosphoglycerate by MIPP 68. Higashi T, Richards CS, Uyeda K: The interaction of phosphofructokinase with ery-
expands the regulatory capacity of the Rapoport-Luebering glycolytic shunt. Proc Natl throcyte membranes. J Biol Chem 254:9542–9550, 1979.
Acad Sci U S A 105:5998–6003, 2008. 69. Jenkins JD, Kezdy FJ, Steck TL: Mode of interaction of phosphofructokinase with the
37. Puchulu-Campanella E, Chu H, Anstee DJ, et al: Identification of the components of erythrocyte membrane. J Biol Chem 260:10426–10433, 1985.
a glycolytic enzyme metabolon on the human red blood cell membrane. J Biol Chem 70. Chu H, Low PS: Mapping of glycolytic enzyme binding sites on human erythrocyte
288:848–858, 2013. band 3. Biochem J 400:143–151, 2006.
38. Campanella ME, Chu H, Low PS: Assembly and regulation of a glycolytic enzyme com- 71. Real-Hohn A, Zancan P, Da Silva D, et al: Filamentous actin and its associated binding
plex on the human erythrocyte membrane. Proc Natl Acad Sci U S A 102:2402–2407, proteins are the stimulatory site for 6-phosphofructo-1-kinase association within the
2005. membrane of human erythrocytes. Biochimie 92:538–544, 2010.
39. Lewis IA, Campanella ME, Markley JL, et al: Role of band 3 in regulating metabolic flux 72. Kloos M, Bruser A, Kirchberger J, et al: Crystallization and preliminary crystallog-
of red blood cells. Proc Natl Acad Sci U S A 106:18515–18520, 2009. raphic analysis of human muscle phosphofructokinase, the main regulator of glycolysis.
40. Sriram G, Martinez JA, McCabe ER, et al: Single-gene disorders: What role could Acta Crystallogr F Struct Biol Commun 70:578–582, 2014.
moonlighting enzymes play? Am J Hum Genet 76:911–924, 2005. 73. Yamada S, Nakajima H, Kuehn MR: Novel testis- and embryo-specific isoforms of the
41. Kim J-W, Dang CV: Multifaceted roles of glycolytic enzymes. Trends Biochem Sci phosphofructokinase-1 muscle type gene. Biochem Biophys Res Commun 316:580–587,
30:142–150, 2005. 2004.
Kaushansky_chapter 47_p0689-0724.indd 713 9/17/15 6:45 PM

