Page 738 - Williams Hematology ( PDFDrive )
P. 738

712  Part VI:  The Erythrocyte                                   Chapter 47:  Erythrocyte Enzyme Disorders            713




                    10.  Howes RE, Dewi M, Piel FB, et al: Spatial distribution of G6PD deficiency variants     42.  Srivastava SK, Beutler E: Glutathione metabolism of the erythrocyte. The enzymic
                     across malaria-endemic regions. Malar J 12:418, 2013.  cleavage of glutathione-haemoglobin preparations by glutathione reductase. Biochem
                    11.  Howes RE, Battle KE, Satyagraha AW, et al: G6PD deficiency: Global distribution,   J 119:353–357, 1970.
                     genetic variants and primaquine therapy. Adv Parasitol 81:133–201, 2013.    43.  Jansen G, Koenderman L, Rijksen G, et al: Age dependent behaviour of red cell glyco-
                    12.  Nkhoma ET, Poole C, Vannappagari V, et al: The global prevalence of glucose-6-   lytic enzymes in haematological disorders. Br J Haematol 61:51–59, 1985.
                     phosphate dehydrogenase deficiency: A systematic review and meta-analysis.  Blood     44.  Lakomek M, Schröter W, De Maeyer G, et al: On the diagnosis of erythrocyte enzyme
                     Cells Mol Dis 42:267–278, 2009.                       defects in the presence of high reticulocyte counts.  Br J  Haematol 72:445–451,
                    13.  Tishkoff SA, Varkonyi R, Cahinhinan N, et al: Haplotype diversity and linkage disequi-  1989.
                     librium at human G6PD: Recent origin of alleles that confer malarial resistance. Science     45.  Wilson JE: Isozymes of mammalian hexokinase: Structure, subcellular localization and
                     293:455–462, 2001.                                    metabolic function. J Exp Biol 206:2049–2057, 2003.
                    14.  Luzzatto L, Usanga EA, Reddy S: Glucose 6-phosphate dehydrogenase deficient red     46.  Cárdenas ML, Cornish-Bowden A, Ureta T: Evolution and regulatory role of the hexok-
                     cells: Resistance to infection by malarial parasites. Science 164:839–842, 1969.  inases. Biochim Biophys Acta 1401:242-264, 1998.
                    15.  Cappadoro M, Giribaldi G, O’Brien E, et al: Early phagocytosis of glucose-6-phosphate     47.  Fujii S, Beutler E: High glucose concentrations partially release hexokinase from inhi-
                     dehydrogenase (G6PD)-deficient erythrocytes parasitized by plasmodium falciparum   bition by glucose-6-phosphate. Proc Natl Acad Sci U S A 82:1552–1554, 1985.
                     may explain malaria protection in G6PD deficiency. Blood 92:2527–2534, 1998.    48.  Gerber G, Kloppick E, Rapoport S: Öber den Einfluss des Anorganischen Phosphats
                    16.  Luzzatto L: G6PD deficiency and malaria selection. Heredity (Edinb) 108: 456, 2012.  auf die Glykolyse; seine Unwirksamkeit auf die Hexokinase des Menschenerythrozyten.
                    17.  Clark TG, Fry AE, Auburn S, et al: Allelic heterogeneity of G6PD deficiency in West   Acta Biol Med Ger 18:305–312, 1967.
                     Africa and severe malaria susceptibility. Eur J Hum Genet 17:1080–1085, 2009.    49.  Beutler E, Teeple L: The effect of oxidized glutathione (GSSG) on human erythrocyte
                    18.  Guindo A, Fairhurst RM, Doumbo OK, et al: X-linked G6PD deficiency protects   hexokinase activity. Acta Biol Med Ger 22:707–711, 1969.
                     hemizygous males but not heterozygous females against severe malaria.  PLoS Med     50.  Beutler E: 2,3-Diphosphoglycerate affects enzymes of glucose metabolism in red blood
                     4:e66, 2007.                                          cells. Nat New Biol 232:20–21, 1971.
                    19.  Bienzle U, Ayeni O, Lucas AO, et al: Glucose-6-phosphate dehydrogenase and malaria.     51.  Mulichak AM, Wilson JE, Padmanabhan K, et al: The structure of mammalian hexoki-
                     Greater resistance of females heterozygous for enzyme deficiency and of males with   nase-1. Nat Struct Biol 5:555–560, 1998.
                     non-deficient variant. Lancet 1:107–110, 1972.       52.  Aleshin AE, Kirby C, Liu X, et al: Crystal structures of mutant monomeric hexokinase
                    20.  Piomelli S, Reindorf CA, Arzanian MT, et al: Clinical and biochemical interactions of   I reveal multiple ADP binding sites and conformational changes relevant to allosteric
                     glucose-6-phosphate dehydrogenase deficiency and sickle-cell anemia. N Engl J Med   regulation. J Mol Biol 296:1001–1015, 2000.
                     287:213–217, 1972.                                   53.  Murakami K, Blei F, Tilton W, et al: An isozyme of hexokinase specific for the human
                    21.  Gibbs WN, Wardle J, Serjeant GR: Glucose-6-phosphate dehydrogenase deficiency and   red blood cell (HK ). Blood 75:770–775, 1990.
                                                                                      R
                     homozygous sickle cell disease in Jamaica. Br J Haematol 45:73–80, 1980.    54.  Ruzzo A, Andreoni F, Magnani M: Structure of the human hexokinase type I gene and
                    22.  Steinberg MH, West MS, Gallagher D, et al: Effects of glucose-6-phosphate dehydroge-  nucleotide sequence of the 5′ flanking region. Biochem J 331:607–613, 1998.
                     nase deficiency upon sickle cell anemia. Blood 71:748–752, 1988.    55.  Magnani M, Serafini G, Stocchi V: Hexokinase type I multiplicity in human erythro-
                    23.  Benkerrou M, Alberti C, Couque N, et al: Impact of glucose-6-phosphate dehydroge-  cytes. Biochem J 254:617–620, 1988.
                     nase deficiency on sickle cell anaemia expression in infancy and early childhood: A     56.  Andreoni F, Ruzzo A, Magnani M: Structure of the 5′ region of the human hexokinase
                     prospective study. Br J Haematol 163:646–654, 2013.   type I (HKI) gene and identification of an additional testis-specific HKI mRNA. Bio-
                    24.  Nouraie M, Reading NS, Campbell A, et al: Association of G6PD with lower haemoglo-  chim Biophys Acta 1493:19–26, 2000.
                     bin concentration but not increased haemolysis in patients with sickle cell anaemia. Br     57.  Hantke J, Chandler D, King R, et al: A mutation in an alternative untranslated exon
                     J Haematol 150:218–225, 2010.                         of hexokinase 1 associated with hereditary motor and sensory neuropathy–Russe
                    25.  Beutler E, Gelbart T: Estimating the prevalence of pyruvate kinase deficiency from the   (HMSNR). Eur J Hum Genet 17:1606–1614, 2009.
                     gene frequency in the general white population. Blood 95:3585–3588, 2000.    58.  Murakami K, Kanno H, Miwa S, et al: Human HK  isozyme: Organization of the hex-
                                                                                                       R
                    26.  Mohrenweiser HW: Functional hemizygosity in the human genome: Direct estimate   okinase I gene, the erythroid-specific promoter, and transcription initiation site. Mol
                     from twelve erythrocyte enzyme loci. Hum Genet 77:241–245, 1987.  Genet Metab 67:118–130, 1999.
                    27.  Watanabe M, Zingg BC, Mohrenweiser HW: Molecular analysis of a series of alleles in     59.  Murakami K, Piomelli S: Identification of the cDNA for human red blood cell-specific
                     humans with reduced activity at the triosephosphate isomerase locus. Am J Hum Genet   hexokinase isozyme. Blood 89:762–766, 1997.
                     58:308–316, 1996.                                    60.  Bonnefond A, Vaxillaire M, Labrune Y, et al: Genetic variant in HK1 is associated
                    28.  Baronciani L, Beutler E: Analysis of pyruvate kinase-deficiency mutations that produce   with a proanemic state and A1C but not other glycemic control-related traits. Diabetes
                     nonspherocytic hemolytic anemia. Proc Natl Acad Sci U S A 90:4324–4327, 1993.  58:2687–2697, 2009.
                    29.  Lenzner C, Nurnberg P, Jacobasch G, et al: Molecular analysis of 29 pyruvate kinase-     61.  Read J, Pearce J, Li X, et al: The crystal structure of human phosphoglucose isomerase
                     deficient patients from central Europe with hereditary hemolytic anemia.  Blood   at 1.6 A resolution: Implications for catalytic mechanism, cytokine activity and haemo-
                     89:1793–1799, 1997.                                   lytic anaemia. J Mol Biol 309:447–463, 2001.
                    30.  Manco L, Abade A: Pyruvate kinase deficiency: Prevalence of the 1456C→T mutation in     62.  Somarowthu S, Brodkin HR, D’Aquino JA, et al: A tale of two isomerases: Compact
                     the Portuguese population. Clin Genet 60:472–473, 2001.  versus extended active sites in ketosteroid isomerase and phosphoglucose isomerase.
                    31.  Zanella A, Bianchi P: Red cell pyruvate kinase deficiency: From genetics to clinical   Biochemistry 50:9283–9295, 2011.
                     manifestations. Baillieres Best Pract Res Clin Haematol 13:57–81, 2000.    63.  Xu W, Lee P, Beutler E: Human glucose phosphate isomerase: Exon mapping and gene
                    32.  Schneider A, Westwood B, Yim C, et al: The 1591C mutation in triosephosphate   structure. Genomics 29:732–739, 1995.
                     isomerase (TPI) deficiency. Tightly linked polymorphisms and a common haplotype in     64.  Sola-Penna M, Da Silva D, Coelho WS, et al: Regulation of mammalian muscle type
                     all known families. Blood Cells Mol Dis 22:115–125, 1996.  6-phosphofructo-1-kinase  and  its  implication  for  the  control  of  the  metabolism.
                    33.  Sherman JB, Raben N, Nicastri C, et al: Common mutations in the phosphofructoki-  IUBMB Life 62:791–796, 2010.
                     nase-M gene in Ashkenazi Jewish patients with glycogenesis VII—and their population     65.  Schöneberg T, Kloos M, Brüser A, et al: Structure and allosteric regulation of eukaryotic
                     frequency. Am J Hum Genet 55:305–313, 1994.           6-phosphofructokinases. Biol Chem 394:977–993, 2013.
                    34.  Montel-Hagen A, Kinet S, Manel N, et al: Erythrocyte Glut1 triggers dehydroascor-    66.  Costa Leite T, Da Silva D, Guimaraes Coelho R, et al: Lactate favours the dissociation of
                     bic acid uptake in mammals unable to synthesize vitamin C.  Cell 132:1039–1048,     skeletal muscle 6-phosphofructo-1-kinase tetramers down-regulating the enzyme and
                     2008.                                                 muscle glycolysis. Biochem J 408:123–130, 2007.
                    35.  Rosa R, Gaillardon J, Rosa J: Diphosphoglycerate mutase and 2,3-diphosphoglycerate     67.  Marinho-Carvalho MM, Costa-Mattos PV, Spitz GA, et al: Calmodulin upregulates
                     phosphatase activities of red cells: Comparative electrophoretic study. Biochem Biophys   skeletal muscle 6-phosphofructo-1-kinase reversing the inhibitory effects of allosteric
                     Res Commun 51:536–542, 1973.                          modulators. Biochim Biophys Acta 1794:1175–1180, 2009.
                    36.  Cho J, King JS, Qian X, et al: Dephosphorylation of 2,3-bisphosphoglycerate by MIPP     68.  Higashi T, Richards CS, Uyeda K: The interaction of phosphofructokinase with ery-
                     expands the regulatory capacity of the Rapoport-Luebering glycolytic shunt. Proc Natl   throcyte membranes. J Biol Chem 254:9542–9550, 1979.
                     Acad Sci U S A 105:5998–6003, 2008.                  69.  Jenkins JD, Kezdy FJ, Steck TL: Mode of interaction of phosphofructokinase with the
                    37.  Puchulu-Campanella E, Chu H, Anstee DJ, et al: Identification of the components of   erythrocyte membrane. J Biol Chem 260:10426–10433, 1985.
                     a glycolytic enzyme metabolon on the human red blood cell membrane. J Biol Chem     70.  Chu H, Low PS: Mapping of glycolytic enzyme binding sites on human erythrocyte
                     288:848–858, 2013.                                    band 3. Biochem J 400:143–151, 2006.
                    38.  Campanella ME, Chu H, Low PS: Assembly and regulation of a glycolytic enzyme com-    71.  Real-Hohn A, Zancan P, Da Silva D, et al: Filamentous actin and its associated binding
                     plex on the human erythrocyte membrane. Proc Natl Acad Sci U S A 102:2402–2407,   proteins are the stimulatory site for 6-phosphofructo-1-kinase association within the
                     2005.                                                 membrane of human erythrocytes. Biochimie 92:538–544, 2010.
                    39.  Lewis IA, Campanella ME, Markley JL, et al: Role of band 3 in regulating metabolic flux     72.  Kloos M, Bruser A, Kirchberger J, et al: Crystallization and preliminary crystallog-
                     of red blood cells. Proc Natl Acad Sci U S A 106:18515–18520, 2009.  raphic analysis of human muscle phosphofructokinase, the main regulator of glycolysis.
                    40.  Sriram G, Martinez JA, McCabe ER, et al: Single-gene disorders: What role could   Acta Crystallogr F Struct Biol Commun 70:578–582, 2014.
                     moonlighting enzymes play? Am J Hum Genet 76:911–924, 2005.    73.  Yamada S, Nakajima H, Kuehn MR: Novel testis- and embryo-specific isoforms of the
                    41.  Kim J-W, Dang CV: Multifaceted roles of glycolytic enzymes.  Trends Biochem Sci   phosphofructokinase-1 muscle type gene. Biochem Biophys Res Commun 316:580–587,
                     30:142–150, 2005.                                     2004.







          Kaushansky_chapter 47_p0689-0724.indd   713                                                                   9/17/15   6:45 PM
   733   734   735   736   737   738   739   740   741   742   743