Page 961 - Williams Hematology ( PDFDrive )
P. 961

936            Part VII:  Neutrophils, Eosinophils, Basophils, and Mast Cells                                                         Chapter 60:  Structure and Composition of Neutrophils, Eosinophils, and Basophils            937




               REFERENCES                                               34.  Davidson DJ, Currie AJ, Reid GS, et al: The cationic antimicrobial peptide LL-37 mod-
                                                                         ulates  dendritic  cell  differentiation  and  dendritic cell-induced  T  cell polarization.  J
                 1.  Bainton DF, Farquhar MG: Origin of granules in polymorphonuclear leukocytes. Two   Immunol 172:1146, 2004.
                  types derived from opposite faces of the Golgi complex in developing granulocytes. J     35.  Ibrahim HR, Aoki T, Pellegrini A: Strategies for new antimicrobial proteins and pep-
                  Cell Biol 28:277, 1966.                                tides: Lysozyme and aprotinin as model molecules. Curr Pharm Des 8:671, 2002.
                 2.  Bainton DF, Ullyot JL, Farquhar MG: The development of neutrophilic polymorphonu-    36.  Ganz T, Gabayan V, Liao HI, et al: Increased inflammation in lysozyme M-deficient
                  clear leukocytes in human bone marrow. J Exp Med 134:907, 1971.  mice in response to Micrococcus luteus and its peptidoglycan. Blood 101:2388, 2003.
                 3.  Bainton DF: Distinct granule populations in human neutrophils and lysosomal organ-    37.  Ganz T: Antimicrobial polypeptides. J Leukoc Biol 75:34, 2004.
                  elles identified by immuno-electron microscopy. J Immunol Methods 232:153, 1999.    38.  Quinn MT, Gauss KA: Structure and regulation of the neutrophil respiratory burst oxi-
                 4.  Bainton DF, Farquhar MG: Segregation and packaging of granule enzymes in eosino-  dase: Comparison with nonphagocyte oxidases. J Leukoc Biol 76:760, 2004.
                  philic leukocytes. J Cell Biol 45:54, 1970.           39.  Klebanoff SJ: Myeloperoxidase. Proc Assoc Am Physicians 111:383, 1999.
                 5.  Pryzwansky KB, Breton-Gorius J: Identification of a subpopulation of primary granules     40.  Hampton MB, Kettle AJ, Winterbourn CC: Inside the neutrophil phagosome: Oxidants,
                  in human neutrophils based upon maturation and distribution. Study by transmission   myeloperoxidase, and bacterial killing. Blood 92:3007, 1998.
                  electron microscopy cytochemistry and high voltage electron microscopy of whole cell     41.  Wheeler MA, Smith SD, Garcia-Cardena G, et al: Bacterial infection induces nitric
                  preparations. Lab Invest 53:664, 1985.                 oxide synthase in human neutrophils. J Clin Invest 99:110, 1997.
                 6.  Aquiles SJ, Karni RJ, Wangh LJ: Fluorescent in situ hybridization (FISH) analysis of the     42.  Pham CT: Neutrophil serine proteases fine-tune the inflammatory response. Int J Bio-
                  relationship between chromosome location and nuclear morphology in human neu-  chem Cell Biol 40:1317, 2008.
                  trophils. Chromosoma 106:168, 1997.                   43.  Kawabata K, Hagio T, Matsuoka S: The role of neutrophil elastase in acute lung injury.
                 7.  Borregaard N, Sorensen OE, Theilgaard-Monch K: Neutrophil granules: A library of   Eur J Pharmacol 451:1, 2002.
                  innate immunity proteins. Trends Immunol 28:340, 2007.    44.  Aprikyan AA, Liles WC, Boxer LA, et al: Mutant elastase in pathogenesis of cyclic and
                 8.  Gombart AF, Kwok SH, Anderson KL, et al: Regulation of neutrophil and eosinophil   severe congenital neutropenia. J Pediatr Hematol Oncol 24:784, 2002.
                  secondary granule gene expression by transcription factors C/EBP epsilon and PU.1.     45.  Horwitz M, Benson KF, Duan Z, et al: Role of neutrophil elastase in bone marrow fail-
                  Blood 101:3265, 2003.                                  ure syndromes: Molecular genetic revival of the chalone hypothesis. Curr Opin Hematol
                 9.  Lekstrom-Himes JA: The role of C/EBP(epsilon) in the terminal stages of granulocyte   10:49, 2003.
                  differentiation. Stem Cells, 19:125, 2001.            46.  Belaaouaj A: Neutrophil elastase-mediated killing of bacteria: Lessons from targeted
                 10.  Shiohara M, Gombart AF, Sekiguchi Y, et al: Phenotypic and functional alterations of   mutagenesis. Microbes Infect 4:1259, 2002.
                  peripheral blood monocytes in neutrophil-specific granule deficiency.  J Leukoc Biol     47.  Hirche TO, Atkinson JJ, Bahr S, et al: Deficiency in neutrophil elastase does not impair
                  75:190, 2004.                                          neutrophil recruitment to inflamed sites. Am J Respir Cell Mol Biol 30:576, 2004.
                 11.  Lekstrom-Himes JA, Dorman SE, Kopar P, et al: Neutrophil-specific granule deficiency     48.  Sennstrom MB, Brauner A, Bystrom B, et al: Matrix metalloproteinase-8 correlates with
                  results from a novel mutation with loss of function of the transcription factor CCAAT/  the cervical ripening process in humans. Acta Obstet Gynecol Scand 82:904, 2003.
                  enhancer binding protein epsilon. J Exp Med 189:1847, 1999.    49.  Balbin M, Fueyo A, Tester AM, et al: Loss of collagenase-2 confers increased skin tumor
                 12.  Gallin JI: Neutrophil specific granule deficiency. Annu Rev Med 36:263, 1985.  susceptibility to male mice. Nat Genet 35:252, 2003.
                 13.  Brumell JH, Volchuk A, Sengelov H, et al: Subcellular distribution of docking/fusion     50.  Opdenakker G, Van den Steen PE, Dubois B, et al: Gelatinase B functions as regulator
                  proteins in neutrophils, secretory cells with multiple exocytic compartments. J Immu-  and effector in leukocyte biology. J Leukoc Biol 69:851, 2001.
                  nol 155:5750, 1995.                                   51.  Schonbeck U, Mach F, Libby P: Generation of biologically active IL-1 beta by matrix
                 14.  Mollinedo F, Calafat J, Janssen H, et al: Combinatorial SNARE complexes modulate the   metalloproteinases: A novel caspase-1-independent pathway of IL-1 beta processing. J
                  secretion of cytoplasmic granules in human neutrophils. J Immunol 177:2831, 2006.  Immunol 161:3340, 1998.
                 15.  Soehnlein O, Lindbom L: Neutrophil-derived azurocidin alarms the immune system. J     52.  Peppin GJ, Weiss SJ: Activation of the endogenous metalloproteinase, gelatinase, by
                  Leukoc Biol 85:344, 2009.                              triggered human neutrophils. Proc Natl Acad Sci U S A 83:4322, 1986.
                 16.  Dalli J, Norling LV, Renshaw D, et al: Annexin 1 mediates the rapid anti-inflammatory     53.  Ogata Y, Enghild JJ, Nagase H: Matrix metalloproteinase 3 (stromelysin) activates the
                  effects of neutrophil-derived microparticles. Blood 112:2512, 2008.  precursor for the human matrix metalloproteinase 9. J Biol Chem 267:3581, 1992.
                 17.  Cocucci E, Racchetti G, Meldolesi J: Shedding microvesicles: Artefacts no more. Trends     54.  Van den Steen PE, Husson SJ, Proost P, et al: Carboxyterminal cleavage of the chemok-
                  Cell Biol 19:43, 2009.                                 ines MIG and IP-10 by gelatinase B, neutrophil collagenase. Biochem Biophys Res Com-
                 18.  Rocha-Pereira P, Santos-Silva A, Rebelo I, et al: The inflammatory response in mild and   mun 310:889, 2003.
                  in severe psoriasis. Br J Dermatol 150:917, 2004.     55.  Van den Steen PE, Wuyts A, Husson SJ, et al: Gelatinase B/MMP-9 and neutrophil col-
                 19.  Levy O: Impaired innate immunity at birth: Deficiency of bactericidal/permeability-in-  lagenase/MMP-8 process the chemokines human GCP-2/CXCL6, ENA-78/CXCL5 and
                  creasing protein (BPI) in the neutrophils of newborns. Pediatr Res 51:667, 2002.  mouse GCP-2/LIX and modulate their physiological activities. Eur J Biochem 270:3739,
                 20.  Nupponen I, Turunen R, Nevalainen T, et al: Extracellular release of bactericidal/per-  2003.
                  meability-increasing protein in newborn infants. Pediatr Res 51:670, 2002.    56.  Pelus LM, Bian H, King AG, et al: Neutrophil-derived MMP-9 mediates synergistic
                 21.  Schultz H, Weiss J, Carroll SF, et al: The endotoxin-binding bactericidal/permeabili-  mobilization of hematopoietic stem and progenitor cells by the combination of G-CSF
                  ty-increasing protein (BPI): A target antigen of autoantibodies. J Leukoc Biol 69:505,   and the chemokines GRObeta/CXCL2 and GRObetaT/CXCL2delta4. Blood 103:110,
                  2001.                                                  2004.
                 22.  Watorek W: Azurocidin—Inactive serine proteinase homolog acting as a multifunc-    57.  Mori Y, Iwasaki H, Kohno K, et al: Identification of the human eosinophil lineage-com-
                  tional inflammatory mediator. Acta Biochim Pol 50:743, 2003.  mitted progenitor: revision of phenotypic definition of the human common myeloid
                 23.  Gonzalez ML, Ruan X, Kumar P, et al: Functional modulation of smooth muscle cells by   progenitor. J Exp Med 206:183, 2009.
                  the inflammatory mediator CAP37. Microvasc Res 67:168, 2004.    58.  Bainton DF: Developmental biology of neutrophils and eosinophils, in Inflammation:
                 24.  Lee  TD,  Gonzalez  ML,  Kumar P,  et al: CAP37,  a  neutrophil-derived inflammatory   Basic Principles and Clinical Correlates, 2nd ed, edited by Gallin JI, Goldstein R, Snyder-
                  mediator, augments leukocyte adhesion to endothelial monolayers.  Microvasc Res   man R, p13. Raven Press, New York, 1992.
                  66:38, 2003.                                          59.  Hogan SP, Rosenberg HF, Moqbel R, et al: Eosinophils: Biological properties and role in
                 25.  Tapper H, Karlsson A, Morgelin M, et al: Secretion of heparin-binding protein from   health and disease. Clin Exp Allergy 38:709, 2008.
                  human neutrophils is determined by its localization in azurophilic granules and secre-    60.  Gleich GJ, Loegering DA, Maldonado JE: Identification of a major basic protein in
                  tory vesicles. Blood 99:1785, 2002.                    guinea pig eosinophil granules. J Exp Med 137:1459, 1973.
                 26.  Gray PW, Flaggs G, Leong SR, et al: Cloning of the cDNA of a human neutrophil bac-    61.  Melo RC, Spencer LA, Perez SA, et al: Vesicle-mediated secretion of human eosinophil
                  tericidal protein. Structural and functional correlations. J Biol Chem 264:9505, 1989.  granule-derived major basic protein. Lab Invest 2009.
                 27.  Boman HG: Antibacterial peptides: Basic facts and emerging concepts. J Intern Med     62.  Calafat J, Janssen H, Knol EF, et al: Ultrastructural localization of Charcot-Leyden crys-
                  254:197, 2003.                                         tal protein in human eosinophils and basophils. Eur J Haematol 58:56, 1997.
                 28.  Niyonsaba F, Ogawa H, Nagaoka I: Human beta-defensin-2 functions as a chemotac-    63.  Dvorak AM, Ackerman SJ, Weller PF: Subcellular morphological and biochemistry of
                  tic agent for tumour necrosis factor-alpha-treated human neutrophils.  Immunology   eosinophils, in Blood Cell Biochemistry, Megakaryocytes, Platelets, Macrophages, and
                  111:273, 2004.                                         Eosinophils, vol 2, edited by Harris JR. Plenum Press, New York, 1990.
                 29.  Oppenheim JJ, Biragyn A, Kwak LW, et al: Roles of antimicrobial peptides such as     64.  Dvorak AM, Letourneau L, Login GR, et al: Ultrastructural localization of the Charcot-
                  defensins in innate and adaptive immunity. Ann Rheum Dis 62 Suppl 2:ii17, 2003.  Leyden crystal protein (lysophospholipase) to a distinct crystalloid-free granule popu-
                 30.  Nizet V, Gallo RL: Cathelicidins and innate defense against invasive bacterial infection.   lation in mature human eosinophils. Blood 72:150, 1988.
                  Scand J Infect Dis 35:670, 2003.                      65.  Popken-Harris P, Checkel J, Loegering D, et al: Regulation and processing of a precur-
                 31.  Zanetti M: Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc   sor form of eosinophil granule major basic protein (ProMBP) in differentiating eosino-
                  Biol 75:39, 2004.                                      phils. Blood 92:623, 1998.
                 32.  Murakami M, Lopez-Garcia B, Braff M, et al: Postsecretory processing generates multi-   66.  Ten RM, Pease LR, McKean DJ, et al: Molecular cloning of the human eosinophil
                  ple cathelicidins for enhanced topical antimicrobial defense. J Immunol 172:3070, 2004.  peroxidase. Evidence for the existence of a peroxidase multigene family. J Exp Med
                 33.  Elssner A, Duncan M, Gavrilin M, et al: A novel P2X7 receptor activator, the human   169:1757, 1989.
                  cathelicidin-derived peptide LL37, induces IL-1 beta processing and release. J Immunol     67.  Weiss SJ, Test ST, Eckmann CM, et al: Brominating oxidants generated by human
                  172:4987, 2004.                                        eosinophils. Science 234:200, 1986.






          Kaushansky_chapter 60_p0923-0938.indd   936                                                                   9/18/15   10:35 PM
   956   957   958   959   960   961   962   963   964   965   966