Page 58 - mathsvol1ch1to3ans
P. 58

58

                             Solution:


                                2
                                         2
                         (ii) sin B + sin C = 1
                                                     √      B      C
                        (iii) cos B − cos C = −1 + 2 2 cos     sin   .
                                                             2     2
                    Exercise 3.8:
                    1. Find the principal solution and general solutions of the following:
                                     1               √                    1
                       (i) sin θ = −√     (ii) cot θ =  3 (iii) tan θ = −√ .
                                      2                                    3
                           Not For Sale - Veeraragavan C S veeraa1729@gmail.com
                       Solution:
                                         1
                          (i)  sin θ = −√ < 0                   principal value lies in the IV quadrant
                                          2
                                         1           π                              π
                               sin θ = −√ = − sin               θ = nπ + (−1)  n  −    .              n ∈ Z
                                          2          4                              4
                                      √                1
                         (ii)  cot θ =  3 ⇒ tan θ = √ > 0       principal value lies in the I quadrant
                                                        3
                                        1        π                        π
                               tan θ = √ = tan                  θ = nπ +                              n ∈ Z
                                         3        6                       6
                                          1
                         (iii)  tan θ = −√ < 0                  principal value lies in the IV quadrant
                                           3
                                          1           π                   π
                               tan θ = −√ = − tan               θ = nπ −                              n ∈ Z
                                           3          6                   6
                                                                                          ◦
                    2. Solve the following equations for which solutions lies in the interval 0 ≤ θ < 360 ◦
                                               4
                                                                            2

                                                       2
                                                                     2
                                         2
                                4
                          (i) sin x = sin x sin x − sin x = 0 ⇒ sin x sin x − 1 = 0
                             sin (x) = 1, sin (x) = −1, sin (x) = 0
                                                 π                         3π
                              sin (x) = 1 ⇒ x =     : sin (x) = −1 ⇒ x =       : sin (x) = 0 ⇒ x = 0 x = π
                                                 2                          2                1
                                  2
                                                         2
                         (ii) 2 cos x + 1 = −3 cos x 2 cos x + 3 cos x + 1 = 0 ⇒ cos (x) = − , cos (x) = −1
                                                                                             2
                                          1         2π 4π
                              cos (x) = − ⇒ x =       ,     : cos (x) = −1 ⇒ x = π
                                          2         3   3
                                                                                                     1
                                                       2
                                  2
                        (iii) 2 sin x + 1 = 3 sin x 2 sin x − 3 sin x + 1 = 0 ⇒ sin (x) = 1, sin (x) =
                                                                                                     2
                                                 π              1         π 5π
                              sin (x) = 1 ⇒ x =     : sin (x) =   ⇒ x =     :
                                                 2              2         6   6
                         (iv) cos 2x = 1 − 3 sin x.

                                                                        3
                                      2
                             1 − 2 sin x = 1 − 3 sin x ⇒ sin x sin x −      ⇒ sin x = 0 ⇒ x = 0, π
                                                                        2
                    3. Solve the following equations:
                          (i) sin 5x − sin x = cos 3x
                             2 sin 2x cos 3x = cos 3x ⇒ cos 3x(2 sin 2x − 1) = 0
                                                             π                         π
                             When cos 3x = 0, 3x = (2n + 1)    and hence x = (2n + 1)
                                                             2                         6
   53   54   55   56   57   58   59   60   61   62   63