Page 10 - PRE-U STPM MATHEMATICS (T) TERM 2
P. 10

Mathematics Term 2  STPM  Chapter 2 Differentiation
               Differentiation of trigonometric functions


               Derivative of sin x
               Let   y  = sin x
                    dy         sin (x + δx) – sin x
                        =   lim
                    dx   x → 0        δx
                                  2 cos  (x +  δx) + x    sin  (x +  δx) – x  Using the formula

                           lim           2              2      4      sin A – sin B
                        =
                                                                                      A – B
                                                                             A + B
                          x → 0              δx                       = 2 cos –––––  sin –––––
                                                                               2
                                                                                       2
                                  2 cos  x +   δx  2  sin   δx
                                     1

                           lim            2       2                                                         2
                        =
                          x → 0         δx
                                                 δx
                                            sin

                           lim   cos  x +   δx           2
                                  1
                                          2
                        =
                          x → 0       2      δx


                                               2
                                                            sin   δx
                 In the limit, as δx → 0, cos  x +   δx 2  → cos x and   δx 2   → 1
                                      1
                                            2
                                                               2
                          d
               Hence      dx   (sin x) = cos x, where x is in radians.
               Derivative of cos x
               Let   y  = cos x
                    dy         cos (x + δx) – cos x
                        =   lim
                    dx   x → 0        dx
                                                                        Using the formula
                                  –2 sin  (x + δx) + x    sin  (x + δx) – x  cos A – cos B

                           lim            2             2      4       = –2 sin  –––––  sin –––––
                                                                               A + B
                                                                                      A – B
                        =
                          x → 0              δx                                2       2
                                –2 sin  1 x +  δx   2  sin  δx
                        =   lim            2      2
                          x → 0         δx
                                            sin   δx
                                   1
                        =   lim   –sin  x +   δx 2    2
                         x → 0         2    δx

                                              2
                                                          sin   δx
               In the limit, as δx → 0, sin  1 x +   δx 2  → sin x and   2   → 1
                                           2
                                                            δx
                                                             2
                             d
               Hence         dx   (cos x) = –sin x, where x is in radians.





                                                                                                      23





       02 STPM Math(T) T2.indd   23                                                                 02/11/2018   12:43 PM
   5   6   7   8   9   10   11   12   13   14