Page 9 - PRE-U STPM MATHEMATICS (T) TERM 2
P. 9

Mathematics Term 2  STPM  Chapter 2 Differentiation
             But y → 0 when x → 0,
                        dy        1
                           =
                        dx     lim  1 2
                                    x
                              x → 0  y
                        dy    1
                           =
                        dx    dx
                              dy

             When      ln x  = y,          From the definition of logarithm i.e. if log  y = x, then y = a .
                                                                                       x
                         x  = e y                                        a
             Differentiate both sides w.r.t. y,
         2              dx    d
                                       y
                                  y
                            =    (e ) = e  = x
                        dy    dy
                        dy     1     1
                            =      =
                        dx    dx     x
                              dy
                      d         1
             Hence,      (ln x) =
                      dx        x

             Derivative of a x

             Let y = a x
             Taking log of both sides to base e,
                                ln y  = ln a x
                                      = x ln a

             Differentiate both sides w.r.t. y,
                             d         dx
                                (ln y)  =    ln a
                             dy        dy
                                  1    dx
                                  y    =   dy  ln a

                                 dx      1
                                     =
                                 dy    y ln a
                                 dy
                                 dx   = y ln a
                                      = a  ln a
                                       x
             Hence,     d   (a ) = a  ln a
                          x
                               x
                      dx
                 Example 4

              Differentiate each of the following with respect to x.
                   x
              (a)  3                                      (b)  10 x
              Solution:           (a)  Let y = 3 x                 (b)  y = 10 x
                                             dy                               dy
                                                   x
                                      Hence,    = 3  ln 3              Hence,    = 10  ln 10
                                                                                     x
                                             dx                               dx

              22





       02 STPM Math(T) T2.indd   22                                                                 02/11/2018   12:43 PM
   4   5   6   7   8   9   10   11   12   13   14