Page 11 - PRE-U STPM MATHEMATICS (T) TERM 2
P. 11

Mathematics Term 2  STPM  Chapter 2 Differentiation

             Derivative of tan x
             Let   y  = tan x
                  dy         tan (x + δx) – tan x
                      =   lim                  4
                  dx   x → 0        δx

                     =   lim       sin (x +  δx)   –   sin x  4  1
                       x → 0  cos (x + δx)  cos x δx

                     =   lim     sin (x +  δx) cos x – cos (x + δx) sin x 4
                       x → 0      cos x cos  (x + δx) · δx

                               sin [(x + δx) – x]

                                                      Using the formula
         2            =   x → 0 cos  x cos  (x + δx) · δx    sin A cos B – cos A sin B = sin (A – B)
                        lim
                                    sin δx
                      =   x → 0 cos  x cos  (x + δx) · δx

                        lim
                                    1          sin δx
                      =   lim                   ·
                       x → 0 cos  x cos  (x + δx)  δx
             In the limit, as δx → 0, cos (x + δx) → cos x and  sin δx  → 1.
                                                         δx

                          d            1
                                                2
             Hence,       dx   (tan x) =   cos  x   = sec  x
                                        2


             Derivative of arcsin x (sin  x)
                                         –1
                       –1
             Let  y = sin  x
                 x = sin y

             Differentiating w.r.t. y,   dx   = cos y
                                  dy
                                  dy    1
                             ∴        =
                                 dx    cos y
                    2
                              2
                                       2
             but  cos  y = 1 – sin y = 1 – x
                    dy        1
             Hence,     =
                    dx     (1 – x )
                                2
                  d              1
                       –1
             i.e.    (sin x) =
                 dx           (1 – x )
                                   2
                                 π
             Note:  y = sin  x ⇒ –    < y <   π  , since y is a principal value angle.
                        –1
                                 2        2
                   For this range of values of y, cos x > 0
                                                 2
                                  2
                   ∴  cos x =  (1 – x )   [not –  (1 – x )]



              24





       02 STPM Math(T) T2.indd   24                                                                 02/11/2018   12:43 PM
   6   7   8   9   10   11   12   13   14