Page 43 - TI Journal 18-1
P. 43

DIFFUSION IMAGING FIBER BUNDLES                           37



          11.  Duda, R.O.; Hart, P.E.; Stork, D.G. Pattern clas-  tivity of the brain’s white matter with dynamic
              sification (2nd ed.). New York, NY: John Wiley   queries. IEEE Trans. Vis. Comput. Graph.
              & Sons; 2012.                                11(4):419-430; 2005.
          12.  Friman, O.; Farnebäck, G.; Westin, C.-F. A   19.  Simon, J.H.; Zhang, S.; Laidlaw, D.H.; Miller, D.E.;
              Bayesian approach for stochastic white matter   Brown, M.; Corboy, J.; Bennett, J. Identification
              tractography. IEEE Trans. Med. Imag. 25(8):965-  of fibers at risk for degeneration by diffusion
              978; 2006.                                   tractography in patients at high risk for MS after
          13.  Hajnal, J.V.; Doran, M.; Hall, A.S.; Collins, A.G.;   a clinically isolated syndrome. J. Magn. Reson.
              Oatridge, A.; Pennock, J.M.; Bydder, G.M. MR   Imag. 24(5):983-988; 2006.
              imaging of anisotropically restricted diffusion of   20.  Taylor, D.G.; Bushell, M.C. The spatial mapping
              water in the nervous system: technical, anatomic,   of translational diffusion coefficients by the NMR
              and pathologic considerations. J. Comput. Assist.   imaging technique. Phys. Med. Biol. 30(4):345;
              Tomo. 15(1):1-18; 1991.                      1985.
          14.  Moberts, B.; Vilanova, A.; van Wijk, J.J.   21.  Westin, C.F.; Maier, S.E.; Khidhir, B.; Everett,
              Evaluation of fiber clustering methods for dif-  P.; Jolesz, F.A.; Kikinis, R. Image processing for
              fusion tensor imaging. IEEE Trans. Vis. Comput.   diffusion tensor magnetic resonance imaging.
              Graph. 9; 2005.                              Proc. 2nd international conference medical
          15.  Mori, S.; Crain, B.J.; Chacko, V.; Van Zijl, P. Three-  image computing and computer-assisted inter-
              dimensional tracking of axonal projections in   vention. Heidelberg, Germany: Springer Berlin
              the brain by magnetic resonance imaging. Ann.   Heidelnerg; 1999: 441-452.
              Neurol. 45(2):265-269; 1999.             22.  Zhang, S.; Correia, S.; Laidlaw, D.H. Identifying
          16.  Moseley, M.E.; Kucharczyk, J.; Asgari, H.S.;   white-matter fiber bundles in DTI data using
              Norman, D. Anisotropy in diffusion-weighted   an automated proximity-based fiber-cluster-
              MRI. Magn. Reson. Med. 19(2):321-326; 1991.  ing method. IEEE Trans. Vis. Comput. Graph.
          17.  Rockafellar, R.T.; Wets, R.J.-B. Variational anal-  14(5):1044-1053; 2008.
              ysis. Heidelberg, Germany: Springer Berlin   23.  Zhang, S.; Demiralp, C.; Laidlaw, D.H. Visualizing
              Heidelberg; 2009.                            diffusion tensor MR images using streamtubes
          18.  Sherbondy, A.; Akers, D.; Mackenzie, R.;    and streamsurfaces. IEEE Trans. Vis. Comput.
              Dougherty, R.; Wandell, B. Exploring connec-  Graph. 9(4):454-462; 2003.
   38   39   40   41   42   43   44   45   46   47   48