Page 123 - Engineering Mathematics Workbook_Final
P. 123

Differential Equations & Partial Differential Equations

                                          x
                                                                                                x
                   (3) e − x  cos10x + 0.1e                       235.  Consider  y −  11  y =  2e  if y(0) = 0,
                                                                                  0
                                                                          y 1 ( ) 0 =  then y(1) =
                   (a) P – 2, Q – 1, R – 3
                   (b) P – 1, Q – 3, R – 2                               (a) e + sin h (1)     (b) cos h(1)

                   (c) P – 1, Q – 2, R – 3                               (c) sin h(1)          (d) cos h(1) + 1

                                                                                                         [CSIR]
                   (d) P – 3, Q – 2, R – 1
                                                                  236.  Suppose  ( ) x =    x cos2x  is a
                                                                                   y
                                      [GATE-2006 (IN)]                              p
                                                                         particular integral of
                                                                           11
            233.  The solution of the differential                        y +   y = − 4sin2x , then the
                                   2
                                 d y                                     constant   is _____
                   equation  k  2     =  y −  y  under the
                                 dx 2         2                                                         [GATE]
                   boundary conditions
                                                                   CAUCHY HOMOGENEOUS LINEAR
                   (i)  y =  y  at x = 0 and                               DIFFERENTIAL EQUATIONS
                            1

                   (ii)  y =  y  at  x =  , where k,  y  and     237.  The general solution of the
                             2
                                                    1
                    y  are constants, is                                 differential equation
                     2
                                                                              2
                                                                            d y  −  x dy  +  y =
                                                                           2
                                                                         x
                                     exp −
                   (a)  y = ( y −  y 2 ) (    / x k 2 )  +  y                dx 2     dx       0 is:
                              1
                                                        2
                                                                                      2
                   (b)  y = ( y −  y 1 )exp −  /  )  y                   (a)  Ax +  Bx  (A, B are constants)
                                          ( x k +
                                                      1
                              2
                                                                                 +
                                                )
                                          ( /
                   (c)  y = ( y −  y 2 )sinh x k +  y                    (b)  Ax B   log x (A, B are constants)
                              1
                                                     1
                                                                                 +
                                          ( x k +
                   (d)  y = ( y −  y 2 )exp −  /  )  y                   (c)  Ax Bx   2 log x  (A, B are
                              1
                                                       2
                                                                         constants)
                                       [GATE-2007-EC]                    (d)  Ax Bx   logx (A, B are
                                                                                 +
            234.  Consider the following second-order                    constants)            [GATE-1998]
                   differential equation:                         238.  The radial displacement in a rotating
                                             2
                            1
                     11
                    y −  4y +   3y =  2t − 3t . The                      disc is governed by the differential
                   particular solution of the differential                         d u    1 du     u
                                                                                     2
                   equation is                                           equation     2  +      −   2  =  8x
                                                                                   dx      x dx    x
                                                 −
                                             −
                                                    2
                       − −
                   (a)  2 2t t −  2      (b)  2t t                       where u is the displacement and x is
                                                                         the radius. If u = 0 and x = 0, and u =
                                                         2
                              2
                   (c) 2t − 3t           (d)  2 2t− −  − 3t
                         [GATE-2017 CE SESSION-II]

                                                            121
   118   119   120   121   122   123   124   125   126   127   128