Page 124 - Engineering Mathematics Workbook_Final
P. 124

Differential Equations & Partial Differential Equations

                   2 at x = 1, calculate the displacement                    2  dy  +  2xy =  2log x
                          1                                       242.  If  x  dx             x     and y(1) = 0
                   at  x =               [GATE-1998]
                          2                                              then y(e) = 0

                                     2 11
                                               1
            239.  The solution to  x y +    xy − =     0                 (a) e                 (b) 1
                                                   y
                                                                             1
                   is                                                    (c)                   (d)   1
                                                                             e                     e 2
                                       −
                         =
                                        3
                   (a)  y C x +  1  2  C x
                                     2
                                                                                                        [GATE]
                                     −
                                      2
                   (b)  y C=  1  +  C x                                                     u      u
                                  2
                                                                  243.  The solution of       =  4    ,
                                  C                                                         x      y
                         =
                   (c)  y C x +     2                                                 − 3y
                             1
                                                                                ) 8e
                                   x                                     u (0, y =         is _________
                                      4
                                +
                         =
                                                                             u
                                                                                    ) 8e
                   (d)  y C x C x                                        (a)  ( , x y =   −  12x−  3y
                             1
                                    2
                                                                             u
                                                                                    ) 8e
                                       [GATE-2015 (PI)]                  (b)  ( , x y =   −  3x−  12 y
            240.  The differential equation for which x,                 (c)  ( , x y =   −  3y−  4x
                                                                                    ) 8e
                                                                             u
                               2
                   x ln x and x  are independent                                          −  3x−  3y
                                                                                    ) 8e
                                                                             u
                   solutions is                                          (d)  ( , x y =
                        3 11
                                 2 11
                                            1
                                                     0
                   (a)  x y +  x y −    3xy +  3y =               244.  The solution of  p +      q =  1 is
                                                                         _____
                                             1
                   (b)  x y −  2x y +    3xy −   6y =
                                  2 11
                        3 11
                                                      0
                                                                                    +
                                                                               =
                                                                                         +
                                                                         (a)  z ax by c
                        3 11
                                            1
                   (c)  x y −  x y +    2xy −  2y =                                   (        ) 2
                                 2 11
                                                     0
                                                                                                   +
                                                                         (b)  z =  ax +  1−  a   y c
                                       1
                               11
                                                0
                   (d)  y 111  −  y +  2y −  3y =
                                                                                               )
                                                                                                  +
                                                                         (c)  z =  ax + ( 1−  a y c
                                                   [CSIR]
                                                                                            +
                                                                         (d)  z =  ax −  ay c
            241.  Consider the differential equation
                                                                                          p +
                   x y −    3xy +  4y =  then the two             245.  The solution of  (1 q =   ) qz  is
                     2 11
                                1
                                         0
                   linearly independent solutions of the                 ______
                   differential equations are given by
                                                                                        +
                                                                                           +
                                                                                   =
                                                                         (a) az −  1 e x ay c
                            3
                        2
                                              2
                          ,
                                               ,
                   (a)  x x              (b)  x x 2  ln x                (b)  z e=  x ay c
                                                                                   +
                                                                                      +
                                                  x
                   (c) v                 (d)  ,x xe
                                                                         (c)  z ax by c=  +  +
                                                                                                   )
                                                                                    +
                                                   [CSIR]                (d)  z = ax by +   f  ( ,a b

                                                            122
   119   120   121   122   123   124   125   126   127   128   129