Page 138 - Engineering Mathematics Workbook_Final
P. 138

Complex Variables

            8.     The value of the integral                      12.    The fixed points of  ( ) z =  2iz +  5
                                                                                              f
                           
                                     
                              2
                      sin z +    cos z  2  dz  where C is                                             z −  2i
                    C    (z −  4 )(z −  ) 2                              are
                   the circle  z =  3 traced anti-                       (a) 1 i               (b) 1 2i
                                                                                                    
                                                                              
                   clockwise, is
                                                                         (c) 2i  1            (d) i  1
                       −
                   (a)  2 i             (b)  i 
                                                                                                  2
                                                                                        f
                                                                  13.    The function  ( ) z =  z  is
                       −
                   (c)  i               (d) 2i 
                                                                         (a) differentiable everywhere
                                              z − sin z
                                     f
            9.     For the function  ( ) z =           ,                 (b) differentiable only at the origin
                                                 z 3
                   the point z = 0 is                                    (c) not differentiable anywhere

                   (a) a pole of order 3                                 (d) differentiable on real x – axis


                   (b) a pole of order 2                          14.    The function  ( ) z =  z  maps the
                                                                                                 2
                                                                                        f
                   (c) an essential singularity                          first quadrant onto


                   (d) a removable singularity                           (a) itself

                                               −
                                             1 e  − z                    (b) upper half plane
                                     f
            10.    For the function  ( ) z =         , the
                                                z                        (c) third quadrant
                   point z = 0 is
                                                                         (d) right half plane
                   (a) an essential singularity
                                                                  15.    The radius of convergence of the
                   (b) a pole of order zero                              power series of the function

                   (c) a pole of order one                                f  ( ) z =  1   about  z =  1   is
                                                                                   −
                                 (d) a removable                                  1 z              4
                   singularity                                                                     1
                                                                         (a) 1                 (b)   4

            11.    The value of the integral      dz   ,
                                               C z −  1                      3
                                                   2
                            4
                   C  : z =  is equal to                                 (c)                   (d) 0
                                                                             4
                   (a)  i               (b) 0

                   (c)  −  i            (d) 2 i








                                                            136
   133   134   135   136   137   138   139   140   141   142   143