Page 139 - Engineering Mathematics Workbook_Final
P. 139

Complex Variables

            16.    Let T be any circle enclosing the              20.    Let  ( ) z  be an analytic function
                                                                              f
                   origin and oriented counter-                          with a simple pole at z = 1 and a
                   clockwise. Then the value of the                      double pole at z = 2 with residues 1

                   integral    cos z  dz  is                            and -2 respectively. Further if
                               z 2                                                             3
                                                                          f  ( ) 0 = ,  ( ) 3 = −   and  f  is
                                                                                  0 f
                   (a) 2 i              (b) 0                                                  4
                                                                         bounded as  z →  , then f(z) must be
                       −
                   (c)  2 i             (d) undefined
                                                                                       1
                                                                         (a)  ( z z −  ) 3 − +  1  −  2  +  1
                                                 1                                     4   z −  1 z −  1  (z −  ) 2  2
                                     f z =
            17.    For the function  ( ) sin , z = 0
                                                 z
                                                                               1
                   is a                                                  (b) − +    1  −   2  +    1
                                                                               4   z −  1 z −  2  (z −  ) 2  2
                   (a) removable singularity

                                                                              1      2        5
                   (b) simple pole                                       (c)      −      +
                                                                             z −  1 z −  2  ( z −  ) 2  2
                   (c) branch point
                                                                             15 +  1  +   2  −    7
                   (d) essential singularity                             (d)   4  z −  1  z −  2  (z −  ) 2  2


                                                   2
                                          f
            18.    A z = 0, the function  ( ) z =  z z            21.    An example of a function with a non-
                                                                         isolated essential singularity at z = 2
                   (a) does not satisfy Cauchy –                         is
                   Riemann equations

                                                                                   1                    1
                   (b) satisfied Cauchy – Reimann                        (a) tan               (b) sin
                   equations but is not differentiable                           z − 2                z − 2
                                                                                                       z −  2
                   (c) is differentiable                                 (c) e −  (z−  ) 2        (d) tan
                                                                                                         z
                   (d) is analytic
                                                                                                        )
                                                                  22.    Let  ( ) z =  f  u ( ,x y ) i+  ( ,x y  be an
            19.    The bilinear transformation  , which
                   maps the points 0, 1,  in the z-plane                entire function having Taylor’s series
                                                                                        
                   onto the points  , ,  i −   1 in the  −             expansion as    a z . If
                                                                                              n
                                                                                            n
                   plane is                                                            n= 0
                                                                          f  ( ) x =  u x  )
                                                                                   ( ,0  and
                                               −
                       z − 1                 z i
                                                                                          )
                                                                           ( ) i=
                   (a)                   (b)                              f iy       (0, y  then
                         +
                       z i                   z + 1
                                                                                   0
                                                                         (a) a =  for all n
                         +
                       z i                   z + 1                            2n
                   (c)                   (d)
                                               −
                       z − 1                 z i                         (b) a =  a =  a =  a =  0, a 
                                                                                                         0
                                                                                                     4
                                                                                   1
                                                                                        2
                                                                              0
                                                                                              3

                                                            137
   134   135   136   137   138   139   140   141   142   143   144