Page 31 - Engineering Mathematics Workbook_Final
P. 31

Calculus

            140.   The function                                   145.     0    /2 log (1 tan x dx+  )
                           ) 4x +
                                        2
                                                       8
                    f  ( , x y =  2  6y −   8x −  4y +
                                               )
                   the optimal value of  ( ,f x y  is                    (a) 0                 (b) 1
                                                                             1
                   (a) a minimum value equal to 10/3                     (c)                   (d) 2
                                                                             2
                   (b) a maximum value equal to 8/3                         
                                                                  146.     0   /2 log +    )
                                                                                  (1 tan x dx
                   (c) a maximum value equal to 10/3
                                                                                                  
                   (d) a minimum value equal to 8/3                      (a) 0                 (b)   log2
                                                                                                   4
            141.   The distance between origin and the
                   point nearest to it on the surface                    (c)   log2           (d)   log2
                          +
                    z =  2  1 xy  is                                         8                     2

                                                                                      2
                                                                                          +
                                              3                   147.     0    /2 (a 2  cos x b 2  sin 2  ) x dx =
                   (a) 1                 (b)
                                              2                                                   
                                                                                                       2
                                                                         (a) 0                 (b)  (a +   b 2 )
                   (c)  3                (d) 2                                                     2

                                                                                                  
                                                                             
                                                                                  2
                                                                                                       2
            142.   The value of   1   e  x  ln x dx =                   (c)  (a +   b 2 )     (d)  (a +   b 2 )
                                                                             4                     8
                       4        2            2        4
                                                  3
                            3
                                                                                         )
                   (a)     e +           (b)    e −               148.     0    /2 log (sin x dx =
                       9        9            9        9
                       2        4            4        2                                            − 
                            3
                                                  3
                   (c)     e +           (d)    e −                      (a) 0                 (b)    log2
                       9        9            9        9                                             2
            143.     − 1 1   x 2 4 sin x  dx =                          (c)  −  log2         (d) log2
                         x +
                             1
                                                                                  5
                                                                                         3
                                                                  149.     0    /2 sin x cos xdx =
                   (a) 0                 (b) 
                                                                             1                     1
                                                                        (a)  16               (b)   24
                   (c) 2                 (d)
                                             2
                                                                             1                     1
                                   +                                   (c)                   (d)
                       /2  10     1 sin x                                 48                   96
            144.     −    /2 x  log          dx =
                                    −
                                   1 sin x                                            1
                                                                  150.  s    0                    dx =
                                                                                         +
                   (a) 0                 (b) 2                                 a 2  cos x b 2 sin x
                                                                                     2
                                                                                                 2
                   (c)  / 2             (d) 


                                                             29
   26   27   28   29   30   31   32   33   34   35   36