Page 36 - Engineering Mathematics Workbook_Final
P. 36

Calculus

                                                                           
                   local minima  x =  4 and point of                     0 x    5. Then F has local minimum at
                   inflection at  x = 1 are                              the points

                   (a) 3, 24             (b) -3, -24                     (a) {0,2,4}           (b) {1,3,5}


                   (c) -3, 24            (d) 0, 0                        (c) {0,3,4}           (d) {3,4,5}

                                          [JAM CA 2005]                                         [JAM CA 2007]

            190.   The value of  x  and  x  with  x   x          193.   Consider the function
                                 1       2       1    2                                     2
                             x
                            
                              2
                   such that  (12 −   x −  x 2  ) dx has the              f  ( ,x y ) (x=  +  ) y  − (x +  y ) 1+ .
                             x 1                                         The absolute maxima value and the
                   largest value are                                     absolute minimum value of the function

                   (a) -3, 3             (b) -4, 1                       on the unit square.

                                                                                      x
                   (c) -4,4              (d) -4,3                         (  , x y ):0   1,0   y    1 ,

                                          [JAM CA 2005]                  respectively are

                        f x =
                                  +
            191.   For  ( ) (1 sin x      )cos x , where                 (a) 3 and   3         (b)   3   and   3
                   0   x   2p , where of the following                           2               2      4
                   statements is true                                              3                    3
                                                                         (c) 3 and             (d) 2 and
                                                                                  4                    4
                       f
                   (a)  ( ) x  has a local maxima at  x =
                                                        6                                       [JAM CA 2007]
                                                       
                   (b)  ( ) x  has a local minima at  x =         194.   Let  ( ) x =  x −  x + 1, 0 x    1.
                                                                                                     
                                                                                            2
                                                                                       3
                                                                              f
                       f
                                                        3
                                                                         Then the absolute minima value of
                       f
                   (c)  ( ) x  has a local maxima at                      f  ( ) x is
                        5
                    x =                                                      14                   5
                         3                                               (a)                   (b)
                                                                             27                   9
                                                       3
                   (d)  ( ) x has a local minima at  x =                     23
                       f
                                                        4                (c)                   (d) 1
                                                                             27
                                          [JAM CA 2006]                                x
                                                                                          2
                                                                             F
                                                                  195.   Let  ( ) x =   (t −  3t +  ) 2 dt . Then

                                                                                       0
            192.   Let                                                   F has
                    f  ( ) x =  x  (t − 1 )(t − 2 )(t − 3 )(t −  ) 4 dt ,      (a) a local maximum at x = 1 and a local
                           0                                             minimum at x = 2



                                                             34
   31   32   33   34   35   36   37   38   39   40   41