Page 35 - Engineering Mathematics Workbook_Final
P. 35

Calculus

            181.   By change the order of integration                    (a) 0.27              (b) 0.67
                     0   2  x   2x  ( , x y dy dx  may be              (c) 1                 (d) 1.22
                                   )
                          2 f
                   represented as                                 186.   The function
                                                                                  
                                      )
                                                                                  
                             2 f
                   (a)   0   2  x   2x  ( ,x y dy dx                    f  ( ) x =  x a  sin  1  , x   0  is
                                                                                  
                                                                                          x
                                       )
                                                                                  
                   (b)   0   2  y   y  f  ( ,x y dy dx                              0       , x =  0
                                                                                  
                                                                                             0
                                       )
                   (c)   0   4  y   /2 y  f  ( , x y dy dx             differentiable at  x =  for all al in the
                                                                         interval
                                      )
                   (d)   x   2x  0   2  f  ( , x y dy dx               (a) (− ,1 )          (b) ( 1,−  ) 
                          2
            182.   The volume generated by revolving the                         )             (d) ( ,1
                   area bounded by  y =  8x  and the line x              (c) (1,                      )
                                      2
                   = 2, about y-axis is                                                         [JAM CA 2006]

                       128                    5                                      x
                                                                                                 2
                                                                              f
                   (a)                   (b)                      187.   Let  ( ) x =   (t − 1 )(t − 5t +  ) 6 dt ,
                         5                  128                                      0
                                                                         for all  x R  . Then
                       127                   32
                   (c)                   (d)
                       5                     5                          (a) f is continuous but not differentiable
                                                                         on R
            183.   The value of integral of the function
                                         4
                   Q  ( , x y =  ) 4x +  3  10y  along the               (b) f’ is bounded on R
                   straight line segment from the point (0,0)            (c) f’ has exactly three zeroes
                   to the point (1, 2) in the xy plane is
                                                                         (d) f is continuous and bounded on R
                   (a) 33                (b) 34                                                 [JAM CA 2011]
                   (c) 40                (d) 56                                                    4
                                                                                               −
            184.   The value of   0     0     e −  ( x +  2  y 2 ) dx dy =   188.   For the function  y =  1 x , the point
                                                                         x =
                                                                             0 is a point of
                                                                        (a) inflection
                   (a)                   (b)  
                        2                                                (b) minima
                                            
                   (c)                  (d)                             (c) maxima
                                             4

                                                                         (d) absolute minima  [JAM CA 2005]
                                             2
            185.  The length of the arc  y =   x 3/2
                                             3                    189.   The value of a and b for which the
                                                                                            3
                                                                                                   2
                                                                                  f
                   between x = 0 and x = 1 is                            function  ( ) x =  x +  ax +  bx  has


                                                             33
   30   31   32   33   34   35   36   37   38   39   40