Page 44 - Engineering Mathematics Workbook_Final
P. 44

Calculus

                                                                             1
            246.   If                                                 (c) 1+ +  .....+  1
                                                 h
                    1 y+
                                               5
                                  4
                      4 dx dy =    1  dy dx +    ( ) g  dy dx          2        n + 1
                                                 =
                    y= 0 x= 0    x= 0 y= 0    x= 4 y g ( ) x                 1          1
                   , then the functions g(x) and h(x) are,            (d) 1+ +   .....+  n + 2        [CSIR]
                                                                             2
                   respectively

                   (a) (x – 4) and 1     (b) (x + 4) and 1
                                                                          /4
                   (c) 1 and (x – 4)     (d) 1 and (x + 4)        250.      log +      )
                                                                               (1 tan x dx
                                                                          0
                                           [JAM GP 2009]
                                                                                                   
                                                                      (a) 0                    (b)   log 2
            247.   The surface area obtained by revolving                                          4
                                         
                    y =  2x , for  x  0,2 , about y-axis is                                     
                                                                      (c)   log 2              (d)   log 2
                                                                          8                        2
                   (a) 2   5            (b) 4   5
                                                                          /2
                                                                                      +
                                                                                   2
                   (c) 2 5              (d) 4 5                 251.      (a 2 cos x b 2  sin 2  ) x dx =
                                                                          0
                                          [JAM CA 2009]                                            
                                                                                                       2
                                                                      (a) 0                    (b)  (a +  b 2 )
                                         
                                =
            248.   If the line  y mx, 0 x     2 is rotated                                        2
                                                                                                   
                                                                          
                   about the line  y =  −  1, then the area of        (c)  (a +  b 2 )         (d)  (a +  b 2 )
                                                                              2
                                                                                                       2
                   the generated surface is                               4                        8
                                                                                                          [JNU]
                             +
                                     +
                   (a) 4 (1 m   ) 1 m
                                                                  252.  Let ‘ f ’ be a real valued function of a
                                                                         real      variable      defined      as
                                       +
                             +
                       4
                   (b)  (1 m     2 ) 1 m                                  f  ( ) x =  x −   ,  where    x  denote the
                                                                                     x
                                       +
                                            2
                   (c) 4 ( 1+   m )  1 m                                largest integer less than or equal to  x
                                                                                         1.25
                                                                         .  The value of     f  ( ) x dx  _________
                                                                                         0.25
                             +
                                      +
                                          2
                   (d) 4 (1 m   ) 1 m                                   is (up to 2 decimal places).
                                                                                            [GATE-2018 (EE)]
                                          [JAM CA 2007]           253.     2 1 x dx =  ________
                                                                              −
                             
            249.  For       n N ,      the    value     of                0
                                                                      (a) 0                    (b) -1
                    n  1− ( / x n ) n
                              dx =                                   (c) 1                    (d) 2
                         −
                    0   n x                                                              e  1
                                                                                               +
                                                                  254.  The value of        e (1 ln x ) dx is
                (a) 0                                                                   1  x 2
                       1 1            1                               (a) 1                    (b) 1/e
                (b) 1+ + +    .........+
                       2 3            n
                                                                      (c) e                    (d) 0


                                                             42
   39   40   41   42   43   44   45   46   47   48   49