Page 40 - Engineering Mathematics Workbook_Final
P. 40

Calculus

                             2
                   (a)  2 −              (b) 2 −  2                      (a) 2                 (b) 1
                                                                             1
                   (c) 2 2               (d) 2 +  2                      (c)                   (d) 0
                                                                             2
            218.   The value of the integral                                                    [JAM MA 2007]
                             tan x
                     0    /2  tan x +  cot x dx  is             223.   The value of the integral

                                                                                  −
                   (a)  / 6             (b)  / 2                         −     /4  1 cos2x dx is
                                            
                   (c) 0                 (d)  / 4                                    2
                                                                             −
                                  1    log x                           (a)  1−   1           (b) 1−  1
                                       e
            219.   The integral           dx                                        2                   2
                                      x
                                                                                  1                     1
                   (a) converges to e                                    (c) 3−   2            (d) 2 −  2
                                    1
                   (b) converges to
                                    e                                                           [JAM GP 2008]

                   (c) converges to 1                             224.   The value of the integral
                                                                                          is
                   (d) diverges                                           9      dy
                                                                          0   y  1+    y
                                 1    dx
            220.   The value of                is
                                 0   x (1 x−  )                                                     (        )
                                                                                                          −
                                                                         (a) 4                 (b) 4   10 1
                                                                        (c) 8                 (d) 12
                   (a) 0                 (b)
                                             2                                                  [JAM CA 2012]
                   (c)                  (d) 2
                                                                                                       2
                                                                                                           x
                                                                  225.   Area enclosed by the curves  y =  and
                                     2n+
                        f
            221.   Let  ( ) x =  n sin  1  x cos x . Then the              2
                         n
                   value of                                               y =  2x −  1 lying in the first quadrant
                   lim   0     /2  f  ( ) x dx −  0     /2 ( lim f  ( ))  is
                                                   x dx
                    n→      n              n→   n
                                                                         (a) 1/6               (b) 1/4
                   is
                                                                         (c) 1/2               (d) 1/3
                   (a) 1/2               (b) 0                                                  [JAM CA 2005]
                   (c) -1/2              (d) −

                                                                                              2 xy
            222.   Let A(t) denote the area bounded by the        226.   The value of   0   1  y   1 x e dx dy
                   curve  y =  e −  x  , the x-axis and the                  e +  2               e −  2
                                              =
                   straight lines  x = −  t  and  x t . Then             (a)   2               (b)   2
                   lim A ( ) t  is equal to
                    t→ 




                                                             38
   35   36   37   38   39   40   41   42   43   44   45