Page 42 - Engineering Mathematics Workbook_Final
P. 42

Calculus

                                                                            1               u v  2u v   
                                                                                            −
                                                                                                   +
                                       )
                                −
                   (d)  (cos1 cos4   [JAM CA 2007]                       (d)    0   4  − u u   /2   f  ,       dv du
                       2                                                     3             3      3  
            234.   Consider the double integral                   236.   The area of the region bounded by the
                     0   1  x   2 x  f  ( ,x y dy dx . After           curves  x =  2y  and  y =  2x  is
                                    )
                          +
                                                                                                2
                                                                                  2
                   reversing the order of the integration, the
                   integral becomes                                      (a)  1                (b)   2
                                                                             3                     3
                   (a)
                     0    0 y− 2  f  ( , x y dx dy +  1    0 1  f  ( , x y dx dy     (c)   4          (d) 4
                                  )
                                                       )
                                            2
                     1
                                 )
                   +   2   3  y   1  f  ( , x y dx dy                      3
                   (b)                                                                          [JAM CA 2008]
                                  )
                     0    0 y  f  ( , x y dx dy +  1    0 1  f  ( , x y dx dy237.   The value of the integral
                                                          )
                                              2
                      1
                                     )
                   +   2   3  y−   1  2  f  ( , x y dx dy                0   3  0   3x  dy dx   is
                                                                                     x +  y 2
                                                                                      2
                   (c)
                     0    0 y  f  ( , x y dx dy +  1    0 y  f  ( , x y dx dy    (a) 3log 2 +  3
                                  )
                                                                                  (
                                                                                           )
                                                           )
                                              2
                      1
                                     )
                   +   2   3  y−   1  2  f  ( , x y dx dy
                                                                                  (
                                                                                           )
                                                                         (b) 3log 2 −    3
                   (d)
                     0    0 y− 2  f  ( , x y dx dy +  1    0 y  f  ( , x y dx dy
                                                            )
                                    )
                                                2
                      1
                                   )
                   +   2   3  y   1  f  ( , x y dx dy                  (c) 3log 2
                                                                                           )
                                                                                   (
                                                                             3
                                                                         (d)  log 2 +     3   [JAM CA 2008]
                                          [JAM CA 2008]                      2
            235.   The double integral                            238.   Changing the order of integration of
                     0   2  x   4 x  f  ( , x y dydx  under the          −   1 1   1 x 2  f  ( , x y dy dx  gives
                                    )
                          −
                                                                                             )
                                                                                −
                                                                                  −
                   transformation u =  x y , v =  y −  2x                      −  1 x 2
                                        +
                                                                                              )
                                                                                    +
                                                                                   1 y
                   is transformed into                                   (a)   0   1   1 y  f  ( ,x y dy dx +
                                                                                    −
                                   u v   2u v   
                                     −
                                             +
                   (a)   0   4  u   u /2   f    ,         dv du    −   0 1   1 y 2  f  )
                                                                                 −
                                    3       3                                −  1 y 2  ( , x y dy dx
                                                                                  −
                                            +
                                     −
                                                                                              )
                                                                                    +
                   (b) 3  0   4  u   u /2   f      u v , 2u v          dv du       (b)   0   1   1 y  f  ( ,x y dy dx
                                                                                    −
                                    3     3                                      1 y
                                                                                              )
                                            +
                                     −
                                                                                   −
                       1  4   u       u v  2u v                      −   −   0 1   1 y 2  f  ( ,x y dy dx
                   (c)    0   u   /2   f  ,       dv du                    −  1 y 2
                                                                                    −
                       3            3      3  

                                                             40
   37   38   39   40   41   42   43   44   45   46   47