Page 41 - Engineering Mathematics Workbook_Final
P. 41

Calculus

                       e − 1                 e + 1                       (d)    2/3  1  2  ( / 1 v−  )  ( f u uv−  ,uv )u du dv
                   (c)                   (d)                                      1/ (1 v−  )
                        2                     2
                                                                                                [JAM CA 2006]
                                          [JAM CA 2005]
                                                                  231.   The area bounded by the curve
                                  0   1  y   1  x                       y =  (x +  2
            227.   The value of                   dx dy  is                         ) 1 , its tangent at (1,4) and the
                                          2
                                       ( x +  y 2 )                      x-axis is

                                                                           1                     2
                   (a)                   (b)                             (a)                   (b)
                       4                     2                               3                     3

                                                                                                 4
                   (c)                   (d)                             (c) 1                 (d)
                       3                     5                                                     3


                                          [JAM CA 2005]           232.  If  denotes the region bounded by the
                                                                         x-axis and the lines  y =  x  and  x = 1,
            228.   The value of the integral                             then the value of the integral

                     0     x     e −  y  dy dx                             cos 2x
                                                                                  ( )
                            y                                                         dx dy is
                                                                                 x
                   (a) 0                 (b) 1
                                                                             sin2                 cos2
                                                                         (a)                   (b)
                   (c) 2                 (d)                                  2                     2

            229.   The entire area bounded by the curve                  (c) cos 2             (d) sin 2
                   r =   a cos2  is
                     2
                                                                                                [JAM CA 2007]
                   (a) a                 (b) 2a
                                                                  233.   Let D be the region in the first quadrant
                      
                                              
                   (c)  a                (d) 2 a                         lying between  x +  2  y =  2  1 and
            230.   The double integral                                   x +  2  y =  2  4. The value of the integral
                     1   2  x   2x  f  ( ,x y dy dx  under the            sin ( x +  y 2 ) dx dy  is
                                   )
                                                                                     2
                   transformation  x u=  (1 v−  ),  y uv is                D
                                                   =
                   transformed into                                          
                                                                         (a)  (cos1 cos2−    )

                             2
                               ( / 1 v
                                       −
                   (a)    1/2   2/3  1/ − − ) )  ( f u uv ,uv )du dv       4
                              (1 v
                                                                                     −      )
                               ( / 1 v−
                   (b)    1/2   2/3  1/ 2 (1 v−  ) )  ( f u uv−  ,uv )u du dv       (b)  (cos1 cos4
                                                                             4
                                                                             
                               ( / 1 v−
                   (c)    1/2   2/3  1/ 2 (1 v−  ) )  ( f u uv−  ,uv )v du dv        (c)  (cos1 cos2−  )
                                                                             2


                                                             39
   36   37   38   39   40   41   42   43   44   45   46