Page 39 - Engineering Mathematics Workbook_Final
P. 39
Calculus
3
2
) ( ) t dt ,
209. Let ( ) x = f 0 x ( x − 2 t g 213. If 0 x f ( ) t dt = x 2 sin x + x . Then
where g is real valued continuous f
function on R. Then f’(x) is equal to 2 is
( )
3
(a) 0 (b) x g x 2 3 3 2
x x (a) 2 + 2 (b) + 4
(c) g ( ) t dt (d) 2x 0 g ( ) t dt
0 3 2
(c) − (d) 0
[JAM MA 2008] 4
210. Let a be non-zero real number. Then e 1 +
1 214. The value of 1 2 e (1 ln ) x dx is
lim 2 x sin t 2 x
( ) dt equals
2
→
x a x − a a
(a) 1 (b) 1/e
1 1 (c) e (d) 0
( )
( )
(a) sin a 2 (b) cos a 2
2a 2a [JAM CA 2005]
1 1
( )
( )
(c) − sin a 2 (d) − cos a 2
2a 2a dx
215. The integral 1 2 x )
+
[JAM MA 2009] x (1 e
→
211. Let : f R R be defined as (a) converges and has value < 1
(b) converges and has value equal to 1
tant
f ( ) t = t , t 0 (c) converges and has value > 1
(d) diverges
1, t = 0
0
216. For , the value of the integral
1 3 0 − x 2
Then the value of lim 2 x 2 f ( ) t dt e dx equals
x→ 0 x x
1
(a) is equal to (-1) (b) is equal to 0 (a) (b)
(c) is equal to 1 (d) does not exist 2 2
2
[JAM MS 2006] (c) (d) 2
d sin x 2
t
212. e dt is equal to [JAM CA 2007]
dx 0
)
x
2
2
(a) e sin x cos x (b) e sin x 217. The integral 0 /2 min (sin ,cos x dx
)
2
(c) (2sin x e sin x (d) e 2sin x equals
37

