Page 39 - Engineering Mathematics Workbook_Final
P. 39

Calculus

                                                                                                      3
                                           2
                                            ) ( ) t dt ,
            209.   Let  ( ) x =  f  0   x ( x −  2  t g          213.   If   0   x  f  ( ) t dt =  x 2 sin x +  x . Then
                   where g is real valued continuous                      f         
                   function on R. Then f’(x) is equal to                       2         is

                                                 ( )
                                              3
                   (a) 0                 (b)  x g x                               2        3     3 2
                                                                                      
                                                                                          
                                                                            
                                                                                
                       x                        x                       (a)     2    +    2      (b)  +  4
                   (c)   g ( ) t dt      (d)  2x  0   g ( ) t dt                      
                       0                                                         3 2
                                                                         (c)  −               (d) 0
                                          [JAM MA 2008]                            4
            210.   Let a be non-zero real number. Then                                  e  1   +
                           1                                      214.   The value of   1   2  e (1 ln ) x  dx  is
                   lim        2   x sin t 2                                              x
                                       ( ) dt  equals
                         2
                     →
                    x a  x −  a   a
                                                                         (a) 1                 (b) 1/e
                        1                    1                           (c) e                 (d) 0
                                                    ( )
                              ( )
                   (a)    sin a  2       (b)    cos a  2
                       2a                    2a                                                 [JAM CA 2005]
                         1                     1
                               ( )
                                                     ( )
                   (c)  −  sin a 2       (d)  −  cos a 2
                        2a                    2a                                             dx
                                                                  215.   The integral   1   2    x )
                                                                                               +
                                          [JAM MA 2009]                                   x  (1 e
                             →
            211.   Let  : f R R  be defined as                           (a) converges and has value < 1
                                                                         (b) converges and has value equal to 1
                             tant
                           
                           
                    f  ( ) t =   t  , t   0                            (c) converges and has value > 1
                                                                        (d) diverges
                              1,     t =  0
                           
                                                                                  0
                                                                  216.   For   , the value of the integral
                                          1    3                           0    −  x 2
                   Then the value of lim   2   x 2 f  ( ) t dt              e    dx  equals
                                     x→ 0  x  x

                                                                             1                      
                   (a) is equal to (-1)   (b) is equal to 0              (a)                   (b)
                   (c) is equal to 1     (d) does not exist                  2                     2
                                                                               2                     
                                          [JAM MS 2006]                  (c)                   (d) 2
                                                                                                     
                    d  sin x  2
                           t
            212.         e dt  is equal to                                                     [JAM CA 2007]
                    dx  0
                                                                                                            )
                                                                                                    x
                                                2
                          2
                   (a) e sin x  cos x    (b) e sin x              217.   The integral   0    /2 min (sin ,cos x dx
                               )
                                   2
                   (c) (2sin x e sin x    (d) e 2sin x                   equals



                                                             37
   34   35   36   37   38   39   40   41   42   43   44