Page 96 - Engineering Mathematics Workbook_Final
P. 96

Differential Equations & Partial Differential Equations

            65.    The solution of the equation                   68.    The solution of the equation
                    dQ  +  Q =  1 with Q =  at t =  0 is                 x  dy  +  y =  0 passing through the
                                           0
                    dt                                                     dx
                                                                         point (1, 1) is
                       Q
                   (a)  ( ) t =  e −  t −  1
                                                                                                    2
                                                                         (a)  x                (b)  x
                                     t −
                       Q t =
                                +
                   (b)  ( ) 1 e
                                                                                                    −
                                                                               1
                                                                                                     2
                                                                              −
                                                                         (c)  x                (d)  x
                       Q t =
                                −
                                    t
                   (c)  ( ) 1 e                                       [GATE-2018 (CE – Afternoon Session]
                                     t −
                       Q t =
                                −
                   (d)  ( ) 1 e                                   69.    If y is the solution of the differential
                                                                                      dy
                                                                         equation  y 3    +  x =  3  0,  ( ) 0 = ,
                                                                                                            1
                                                                                                    y
                        [GATE-2017-CE-SECTION-1]                                      dx
                                                                                      y −
            66.    For the initial value problem                         the value of  ( ) 1  is
                                                                             −
                                                                                                   −
                    dx                                                   (a)  2                (b)  1
                             ( ) ( ) 0 =
                                ,
                       =  sin t x        0
                    dt
                                                                         (c) 0                 (d) 1
                   the value of  x  at t =   , is                     [GATE-2018 (ME-Afternoon Session]
                                           3
                   __________.                                    70.    A curve passes through the point
                                                                         ( x =  1, y =  ) 0  and satisfies the
                                     [GATE-2017-(CH)]
                                                                         differential equation
            67.    The solution of the differential                       dy    x +  y 2   y
                                                                                 2
                   equation                                                  =          +    .
                                                                          dx      2y       x
                                       −
                            2
                        −
                                           2
                    y  1 x dy +   x  1 y dx =  is
                                                 0
                                                                         The equation that describes the curve
                                                                         is
                          −
                   (a)  1 x =  2  c                                                 y 2 
                                                                               
                                                                               
                                                                         (a) ln 1+    2       =  x − 1
                                                                               
                          −
                   (b)  1 y =  2  c                                                 x  
                                                                             1        y 2   
                                                                                  
                                     −
                                         2
                                             c
                                                                                  
                   (c)  1 x−  2  +  1 y =                                (b)  ln 1+      2     =  x − 1
                                                                             2        x  
                                         2
                                     +
                                             c
                   (d)  1 x+  2  +  1 y =                                          y   
                                                                         (c) ln 1+          =  x − 1
                                                                               
                                                                                    x 
                                        [ESE-2017 (EE)]                      1        y 
                                                                                  
                                                                         (d)  ln 1+             =  x − 1
                                                                                  
                                                                             2        x 
                                                                                           [GATE-2018-(EC)]

                                                             94
   91   92   93   94   95   96   97   98   99   100   101