Page 97 - Engineering Mathematics Workbook_Final
P. 97

Differential Equations & Partial Differential Equations

            71.    Consider the following second order                   Given  ( ) 0 =  20 and  ( ) 1 = 10 / e,
                                                                                x
                                                                                                 x
                   linear differential equation
                                                                                                        x
                     2
                    d y  = − 12x +  24x −  20. The                       where e = 2.718, the value of  ( ) 2 is
                                 2
                    dx 2                                                 ___________.
                   boundary condition are at  x =  0,                                [GATE-2015-EC-SET-3]
                    y =  5  and at  x =  2,  y =  21

                   The value of y at  x = 1 is _________.         75.    A solution of the ordinary differential
                                                                                     2
                                                                                   d y      dy
                               [GATE-2015-CE-SET-2]                      equation       +  5   +  6y =  is
                                                                                                       0
                                                                                    dt  2   dt
                                          2
                                         d y
            72.    Find the solution of       =  y  which                such that  ( ) 0y  =  2 and
                                         dx 2
                                                                                    −
                   passes through origin and point                        y ( ) 1 = −  1 3e  . The value of   dy  ( ) 0
                         3                                                         e 3                 dt
                     ln2,  
                                                                     is _________.
                         4 
                           1        −                                                [GATE-2015-EE-SET-1]
                                     x
                   (a)  y =  e −  x  e
                           2
                                                                                           2
                                                                                                     1
                                                                                              11
                                                                                                        y
                                                                  76.    The solution to  x y +   xy − =    0 is
                            1
                   (b)  y =  (e +  x  e − x )
                                                                               =
                            2                                            (a)  y C x +  2  C x
                                                                                             −
                                                                                              3
                                                                                   1       2
                           1
                   (c)  y =  (e −  x  e − x  )                           (b)  y C +   C x
                                                                               =
                                                                                           −
                                                                                            2
                           2                                                       1    2
                            1
                                    −
                                     x
                   (d)  y =  e +  x  e                                   (c)  y C x +   C 2
                                                                               =
                            2                                                      1     x
                               [GATE-2015-ME-SET-1]
                                                                                      +
                                                                                            4
                                                                               =
                                                                         (d)  y C x C x
            73.    The solution of the differential                                1      2
                               2
                             d y      dy
                   equation       +  2    +  y =  0 with                                [GATE-2015-EC (PI)]
                              dt 2    dt
                                                                                                              1
                                                                                                      y
                                                                                     y
                    y ( ) 0 =  y 1 ( ) 0 =  1 is                  77.    A function  ( ) t , such that  ( ) 0 =
                                                                                        −
                                                                                         1
                                                                              y
                             )
                                                    )
                          −
                               t
                                                       t −
                                               +
                   (a) (2 t e            (b) (1 2t e                     and  ( ) 1 = 3e , is a solution of the
                                                                         differential equation
                                                      t
                                                                           2
                   (c) (2 t e+  )  t −      (d) (1 2t e−  )               d y  + 2  dy  +  y =  0. Then  ( ) 2y   is
                                                                          dt 2     dt
                               [GATE-2015-EC-SET-1]
                                                                               −
                                                                                1
                                                                         (a) 5e                (b) 5e − 2
            74.    Consider the differential equation
                                                                                                     −
                                                                                −
                                                                                                      2
                                                                                1
                     2
                    d x ( ) t   dx ( ) t                                 (c) 7e                (d) 7e
                            +  3      +  2x ( ) 0t =
                      dt 2       dt                                                  [GATE-2016-EE-SET-1]

                                                             95
   92   93   94   95   96   97   98   99   100   101   102