Page 99 - Engineering Mathematics Workbook_Final
P. 99

Differential Equations & Partial Differential Equations

                            −
                                         −
                   (a)  K e ( 1+  ) 6 x  +  K e ( 1−  ) 6 x        86.   Consider the differential equation
                                                                                       ( )
                                                                               x +
                                                                                            0 with initial
                                                                             ( ) 27y x =
                                       2
                                                                            11
                         1
                                                                         3y
                                                                                                    1
                                                                                     y
                                                                                                   y
                                                                                            0
                            −
                                         −
                   (b)  K e ( 1+  ) 8 x  +  K e ( 1−  ) 8 x              conditions  ( ) 0 =  and  ( ) 0 =  2000 .
                                       2
                         1
                                                                         The value of y at  x = 1 is
                                         −
                           −
                   (c)  K e ( 2+  ) 6 x  +  K e ( 2−  ) 6 x              ___________.
                         1             2
                                                                              [GATE-2017-ME-SECTION-2]
                            −
                                          −
                   (d)  K e ( 2+  ) 8 x  +  K e ( 2−  ) 8 x
                         1             2                          87.    The general solution of the
                                                                         differential equation
                        [GATE-2017-EC-SECTION-2]
                                                                                   3
                                                                           4
                                                                                          2
                                                                         d y     d y     d y     dy
            84.    Consider the following second-order                      4  − 2  3  + 2  2  − 2  +  y =  0
                   differential equation:                                 dx     dx      dx      dx
                                                                                                     +
                                                                         (a)  y =  (c − c 2  ) x e + c 3  cos x c 4 sin x
                                                                                           x
                                                                                  1
                            1
                                             2
                     11
                    y −  4y +   3y =  2t − 3t
                                                                                                     +
                                                                                           x
                                                                         (b)  y = (c + c 2  ) x e − c 3  cos x c 4 sin x
                                                                                   1
                   The particular solution of the
                                                                                                     +
                   differential equation is                              (c)  y =  (c + c 2  ) x e + c 3 cos x c 4  sin x
                                                                                           x
                                                                                  1
                                             −
                       − −
                                                                                                     −
                                                                                           x
                   (a)  2 2t t −  2      (b)  2t t −  2                  (d)  y = (c + c 2  ) x e + c 3  cos x c 4 sin x
                                                                                   1
                                             − −
                              2
                                                         2
                   (c) 2t −  3t          (d)  2 2t −   3t                                     [ESE-2017 (EE)]
                        [GATE-2017-CE-SECTION-2]                  88.    The solution of the differential
                                                                         equation
            85.    The differential equation
                     2
                    d y  +  16y =  0  for  ( ) x  with the               d y  −  dy  − 2y =  3e ,
                                                                           2
                                                                                            2x
                                        y
                    dx 2                                                  dx 2  dx
                                              dy
                                                                                                1
                                                                                        0
                                                                                               y
                                                                                 y
                   two boundary conditions           = 1                 where,  ( ) 0 =  and  ( ) 0 =  −  2  is
                                              dx  x= 0
                        dy                                               (a)  y e=  − x  − e +  xe
                                                                                             2x
                                                                                       2x
                   and        =  −  1 has
                        dx  x= 
                             2                                           (b)  y e=  x  − e − 2x  − xe
                                                                                             2x
                   (a) no solution
                                                                         (c)  y e=  − x  + e + xe
                                                                                             2x
                                                                                       2x
                   (b) exactly two solutions
                                                                         (d)  y e=  x  − e − 2x  +  xe
                                                                                             2x
                   (c) exactly one solution
                   (d) infinitely many solutions                                              [ESE-2018 (EE)]
                        [GATE-2017-ME-SECTION-1]



                                                             97
   94   95   96   97   98   99   100   101   102   103   104