Page 489 - Chapra y Canale. Metodos Numericos para Ingenieros 5edición_Neat
P. 489
PT5.3 ORIENTACIÓN 465
PT5.3.2 Metas y objetivos
Objetivos de estudio. Después de estudiar la parte cinco, usted habrá mejorado su
capacidad para ajustar curvas a los datos. En general, usted dominará las técnicas, habrá
aprendido a valorar la confiabilidad de los resultados y será capaz de seleccionar el
método (o métodos) para cualquier problema específico. Además de estas metas gene-
rales, los conceptos particulares de la tabla PT5.3 deberán asimilarse y dominarse.
Objetivos computacionales. Se le han proporcionado algoritmos de cómputo simples
para implementar las técnicas analizadas en la parte cinco. También usted puede tener
acceso a los paquetes y bibliotecas de software. Todo esto tiene utilidad como herra-
mientas de aprendizaje.
Se proporcionan algoritmos en seudocódigo para la mayoría de los métodos en la
parte cinco. Esta información le permitirá expandir sus bibliotecas de software para
incluir técnicas más allá de la regresión polinomial. Por ejemplo, usted puede encontrar
útil, desde un punto de vista profesional, tener software para la regresión lineal múltiple,
la interpolación polinomial de Newton, la interpolación con trazadores cúbicos y la
transformada rápida de Fourier.
Además, una de las metas más importantes deberá ser dominar varios de los paque-
tes de software de utilidad general que están disponibles. En particular, usted debería
acostumbrarse a usar esas herramientas para implementar métodos numéricos en la
solución de problemas en ingeniería.
TABLA PT5.3 Objetivos específi cos de estudio de la parte cinco.
1. Comprender la diferencia fundamental entre regresión e interpolación, y darse cuenta de que
confundirlos puede llevar a serios problemas.
2. Entender la deducción de la regresión lineal por mínimos cuadrados y ser capaz de evaluar la
confi abilidad del ajuste mediante evaluaciones gráfi cas y cuantitativas.
3. Saber cómo linearizar datos mediante transformación.
4. Entender situaciones donde son apropiadas las regresiones polinomiales, múltiples y no lineales.
5. Ser capaz de reconocer modelos lineales generales, entender la formulación matricial general
para mínimos cuadrados lineales, y saber cómo calcular intervalos de confi anza para parámetros.
6. Entender que hay uno y sólo un polinomio de grado n o menor que pasa exactamente a través de
n + 1 puntos.
7. Saber cómo obtener el polinomio de interpolación de Newton de primer grado.
8. Reconocer la analogía entre el polinomio de Newton y la expansión de la serie de Taylor, y cómo
se relaciona el error de truncamiento.
9. Comprender que las ecuaciones de Newton y Lagrange son simplemente formulaciones diferentes
de la misma interpolación polinomial, y entender sus respectivas ventajas y desventajas.
10. Percatarse de que, por lo general, se obtienen resultados más exactos si los datos usados para
interpolación están más o menos centrados y cercanos al punto desconocido.
11. Darse cuenta que los datos no tienen que estar igualmente espaciados ni en un orden particular
para los polinomios de Newton o de Lagrange.
12. Saber por qué son útiles las fórmulas de interpolación con igual espaciamiento.
13. Reconocer las desventajas y los riesgos asociados con la extrapolación.
14. Entender por qué los trazadores (splines) tienen utilidad para datos con áreas locales de cambio
abrupto.
15. Reconocer cómo se usa la serie de Fourier para ajustar datos a funciones periódicas.
16. Entender la diferencia entre dominios de frecuencia y de tiempo.
6/12/06 13:57:11
Chapra-17.indd 465 6/12/06 13:57:11
Chapra-17.indd 465

