Page 494 - Chapra y Canale. Metodos Numericos para Ingenieros 5edición_Neat
P. 494

470                     REGRESIÓN POR MÍNIMOS CUADRADOS

                                      Ahora, si observamos que ∑a  = na , expresamos las ecuaciones como un conjunto de
                                                                   0
                                                              0
                                      dos ecuaciones lineales simultáneas, con dos incógnitas (a  y a ):
                                                                                     0
                                                                                        1
                                                   i)
                                            0 (∑
                                                     1 ∑
                                          na +    x a =    y                                           (17.4)
                                                            i
                                          ∑ (  xa +  ∑  x i ) a =  x y                                 (17.5)
                                              i) (
                                                           i ∑
                                                        2
                                                                 i i
                                                 0
                                      Éstas se llaman ecuaciones normales, y se resuelven en forma simultánea
                                               n∑ x y − ∑ x ∑  y
                                           a =     ii 2  i  2  i                                       (17.6)
                                                n∑
                                            1
                                                   x − ∑(
                                                    i    x )
                                                          i
                                      Este resultado se utiliza conjuntamente con la ecuación (17.4) para obtener
                                              –    –
                                          a  = y – a x                                                 (17.7)
                                           0
                                                  1
                                           – –
                                      donde y y x son las medias de y y x, respectivamente.
                      EJEMPLO 17.1    Regresión lineal
                                      Planteamiento del problema.  Ajuste a una línea recta los valores x y y en las dos
                                      primeras columnas de la tabla 17.1.
                                      Solución.  Se calculan las siguientes cantidades:
                                                   ∑                  ∑    2
                                          n = 7        x y = 119 5.       x = 140
                                                        ii
                                                                           i
                                          ∑  x = 28      x =  28  = 4
                                              i
                                                            7
                                          ∑  y = 24      y =  24  = 3 428571.
                                              i
                                                            7
                                      Mediante las ecuaciones (17.6) y (17.7)
                                              7 119 5 −(  . )  28 24(  )
                                          a =               =  0 8392857.
                                           1
                                               7 140 −(  ) ( 28)  2
                                         a  = 3.428571 – 0.8392857(4) = 0.07142857
                                          0
                                      TABLA 17.1  Cálculos para el análisis de error en el ajuste lineal.

                                                                – 2
                                                            (y i  – y)    (y i  – a 0  – a 1 x i ) 2
                                      x i      y i
                                      1        0.5           8.5765           0.1687
                                      2        2.5           0.8622           0.5625
                                      3        2.0           2.0408           0.3473
                                      4        4.0           0.3265           0.3265
                                      5        3.5           0.0051           0.5896
                                      6        6.0           6.6122           0.7972
                                      7        5.5           4.2908           0.1993

                                      ∑       24.0          22.7143           2.9911





                                                                                                         6/12/06   13:57:12
          Chapra-17.indd   470                                                                           6/12/06   13:57:12
          Chapra-17.indd   470
   489   490   491   492   493   494   495   496   497   498   499