Page 155 - Towards Trustworthy Elections New Directions in Electronic Voting by Ed Gerck (auth.), David Chaum, Markus Jakobsson, Ronald L. Rivest, Peter Y. A. Ryan, Josh Benaloh, Miroslaw Kutylowski, Ben Adida ( (z-lib.org (1)
P. 155

An Implementation of a Mix-Net Based Network Voting Scheme
                                                                    2
                                     ˙ t i =[3z π(i) + τλ i ]g,
                                          n

                                              3
                                     ˙ v =[
                                         j=1  z j + τλ + ρz]g  ˙ v i =[3z π(i) + ρs i ]g    147
                                                               n
                                                                   2
                                                          ˙ w =[
                                     ˙ w i =[2z π(i) + σs i ]g,  z j + σz]g
                                                              j=1

                                                                         j
                                                                     j
                                    c i = H(p, q, g, ¯y, ˜g, {˜g j }, (G j ,M j ) j , (G ,M ) j ,

                                                j
                                            ˜ g , (˜g ) j ,g ,m ,v,w,t,u, (u j ) j ,
                                              ( ˙ t j ) j , ˙v, (˙v j ) j , ˙w, (˙w j ) j ,i)  (1)
                                                            n

                                    r i = c π −1       r =    s j c j + z mod q
                                            (i) + z i,
                                                           j=1
                                          n
                                                2

                                    λ =     λ j c j + λ mod q
                                         j=1
                                          n


                                     ζ =    [c j ]G ,  η =[x]ζ                              (2)
                                                j
                                         j=1
                                                                                            (3)
                                    y =[z ]g,    η =[z ]ζ

                                     c = H(p, q, g, y, ζ, η, y ,η )                         (4)


                                                                                            (5)
                                     r = c x + z mod q

                                                           i
                          The prover send the proof g ,m , ˜g , ˜g ,v,w,t,u,u i , ˙ t i , ˙v i , ˙v, ˙w i , ˙w, r, r i , λ ,η,η ,



                          y ,r (i =1,... ,n) to the verifier along with (G ,M ) i .

                                                                   i   i
                          3.2  Verifications of the Proof
                          The verifier first computes (c i ) i=1,...,n according to Eq.(1). Next, the verifier
                          compute
                                                           n

                                                       ζ =   [c j ]G   j
                                                          j=1
                          and generate c according to Eq.(4). The verifier accepts the proof if all of the

                          following equations hold.
                                                        v, t, w ∈ E
                                                      n


                                                [r]g +  [r j ]G j = g + ζ
                                                     j=1
                                                      n                  n


                                               [r]¯ +   [r j ]M j = η + m +  [c j ]M j
                                                 y
                                                     j=1                j=1
                                                       n             n

                                                [r]˜ +   [r j ]˜ j =˜ +  [c j ]˜   j

                                                           g
                                                                          g
                                                                g
                                                  g
                                                      j=1           j=1
   150   151   152   153   154   155   156   157   158   159   160