Page 101 - Elementary Algebra Exercise Book I
P. 101

ELEMENTARY ALGEBRA EXERCISE BOOK I                                             inequAlities



               Proof: If one of  x,y,z  is zero, without loss of generality, assume  x =0, then  |y + z| =0,
               thus  y + z =0, which implies  x + y + z =0. If  x,y,z  are all nonzero, then there are four
               possibilities:


                     1) If  x,y,z  are all positive, then  y + z ≤ x, z + x ≤ y, x + y ≤ z , impossible.
                     2) If  x,y,z  have two positive one negative, without loss of generality, assume
                        x> 0,y > 0,z < 0.  |y + z|≤ x ⇒−x ≤ y + z ≤ x ⇒ x + y + z ≥ 0. On the
                        other hand  |x + y|≤ |z|⇒ x + y ≤−z ⇒ x + y + z ≤ 0. As a conclusion,
                        x + y + z =0.
                     3) If  x,y,z  have one positive two negative, without loss of generality, assume
                        x> 0,y < 0,z < 0 .  |y + z|≤ x ⇒ y + z ≥−x ⇒ x + y + z ≥ 0. On the other
                        hand,  |x + y|≤ |z|⇒ x + y ≤−z ⇒ x + y + z ≤ 0. As a conclusion,
                        x + y + z =0.
                     4) If  x,y,z  are all negative, then  x ≤ y + z ≤−x, y ≤ z + x ≤−y, z ≤ x + y ≤−z ,
                        then  x + y + z ≤ 2(x + y + z), thus x + y + z ≥ 0, a contradiction to the assumed
                        negativity condition.




               3.41    If  x> y > 0, show      x − y +     2xy − y >x .
                                                                   2
                                                     2
                                                2
                                              2         2     2     2    2     2           2           2
                                                    2
                                                                                                   2
                                                                     2
                                         2
                                                                                       2
                                                         2
                                                                           2
                                                                2
               Proof 1: x>y > 0 ⇒ xy > y , 2xy − y >y ⇒ x − y >x − 2xy + y =(x − y) ⇒
                   x>y > 0 ⇒ xy > y , 2xy − y >y ⇒ x − y >x − 2xy + y =(x − y) ⇒

                       2
                            2
                      x − y >x − y                               x − y +      2xy − y >x − y + y = x .
                                                                                      2
                                                                        2
                                                                   2
                        2
                                                  2
                   2
                  x − y >x − y    , and    2xy − y >y , thus

                                                                   2    2           2      x − y >x − y
                                                                                            2
                                                                                                 2
               Proof 2: x> y > 0 ⇒ y> −y ⇒ x + y >x − y ⇒ x − y > (x − y) ⇒

                            2            2    2      2xy − y >y  (ii).
                                                             2
               (i).  2xy > 2y ⇒ 2xy − y >y ⇒

                                  2
                             2
                                                2
               (i)+(ii)⇒   x − y +      2xy − y >x .

                                                                                      2
                                                        2
                           2
                                                             2
                                2
                                                                           2

                                              2
                                                                                                       2
                                                                                                  2

                                                                      2
               Proof 3:  x − y +      2xy − y >x ⇔ x −y +2 2        (x − y )(2xy − y ) +2xy −y >x ⇔
                                                                       2
                       2
                                          2
                            2
                                                                                                   2
                                                                                  2
                                                                                              2
                                                         2
                                                    2
                     x − y +
                                  2xy − y >x ⇔ x −y +2
                                                                (x − y )(2xy − y ) +2xy −y >x ⇔
                  (x − y )(2xy − y ) >y − xy . The left hand side is greater than zero, while he right
                        2    2          2     2
                      (x − y )(2xy − y ) >y − xy
                                          2
                         2
                    2
                                    2

               hand side  y − xy = y(y − x) < 0, thus      (x − y )(2xy − y ) >y − xy  always holds.
                           2
                                                                                   2
                                                             2
                                                                  2
                                                                             2
                                             1
               3.42    Given  x> 0,y > 0, +      9 y  =1, show  x + y ≥ 12.
                                             x

               Proof: Since  x> 0,y > 0, we have      1 x  +  9 y  ≥ 2  1 x  ·  9 y  = √ 6 xy  . Since   1 x  +  y 9  =1 , we have
                 6                               √                    √
                √   ≤ 1 , which is equivalent to   xy ≥ 6.  x + y ≥ 2 xy ≥ 12.
                 xy
               3.43     a, b, c  are real numbers and  a + b + c =1, show  a + b + c ≥ .
                                                                            2
                                                                                2
                                                                                     2
                                                                                          1
                                                                                          3
                                                                                                                                        1
                                                                                                   1
                                                                          1
                                                                   2
                                                                                                                   2
                                                                                                            2
                                                                                                                       2
                                                                                                        2
                                                                2
                                                                                                2
                                                                       2
                                                                                    2
                                                                                2
                                                                                                                                                2
               Proof 1:  a + b + c =1 ⇒ c =1 − a − b , then a +b +c − = a +b +(1−a−b) − = a +b +1+a +b −2a−2b+2ab− = 2(a +
                                                                                                                                         1
                                                                                                                        2
                                                                2
                                                                                                                    2
                                                                        2
                                                                                                                                                 2
                                                                                                2
                                                                                 2
                                                                           1
                                                                                     2

                                                                                                             2
                                                                                                         2
                                                                                                    1
                                                                    2
                                                               a +b +c    3 − = a +b +(1−a−b) − = a +b +1+a +b −2a−2b+2ab− = 2(a +
                                                                                                                                        3
                                                                                                   3
                                                                                                                                         3
                                                            2            1  3     2            b−1 2 3  b−1 2  2     1          b−1 2  (3b−1) 2 2 ] ≥ 0
                                                                                                                                   ) + (3b−1)
                                                 1
 1
           1
 2
                 2
 2
                                                                          1
                     2
                                2
        2
 2
                                                        2
 2
                            2
                                                                                                                      1
 2
                                                                                  2
                                                                                                                2
                                                                                                          ) +b −b+ ] = 2[(a+ b−1 2
                                                                                                  ) −( b−1 2
                                                           b +ab−a−b+ ) = 2[a +(b−1)a+( b−1 2
                                                             2
 2
            1
                     2
 2
 2
 2
         2
                  2
                                 2
 2
                                                         2
                             2
                                                 1
 a +b +c − = a +b +(1−a−b) − = a +b +1+a +b −2a−2b+2ab− = 2(a + b +ab−a−b+ 3 ) = 2[a +(b−1)a+(  2 ) −(  2 ) +b −b+ ] = 2[(a+     2 ) +    12 12  ] ≥ 0
 1

                                                                                                                     3
 a +b +c
 3 − = a +b +(1−a−b) − = a +b +1+a +b −2a−2b+2ab− = 2(a +
           3
                                                 3
                                                                                                                                  2
                                                                          3
                                                                                                         2
                                                                                                                      3
                                                                                                 2
            3
                                                  3
 3
                                                     2
       b−1 2
 2
 1
 2
                                            ) +
                                                 (3b−1)
                   ) +b −b+ ] = 2[(a+ b−1 2
 2
 b +ab−a−b+ ) = 2[a +(b−1)a+( b−1 2  b−1 2  2 2  1 3 1 3  b−1 2  (3b−1) 2 ] ≥ 0 .
 2
 1
           ) −( b−1 2
                                          2 ) +
                 2 ) +b −b+ ] = 2[(a+
                                                       ] ≥ 0
 3 ) = 2[a +(b−1)a+(
        2 ) −(
 b +ab−a−b+
                                                  12
                                                   12
                 2
                                           2
 3
         2
                                            Download free eBooks at bookboon.com
                                                            101
   96   97   98   99   100   101   102   103   104   105   106