Page 98 - Elementary Algebra Exercise Book I
P. 98

ELEMENTARY ALGEBRA EXERCISE BOOK I                                             inequAlities




               3.33     |x − 4| < 1 holds whenever  |x − 2| <a  holds, find the range of the positive
                           2
               number  a .

               Solution: Let  A = {x : |x − 2| < a, a > 0},B = {x : |x − 4| < 1},
                                                                      2
                                                                                 √ √
                                                                     √
               then   A = {x :2 − a< x< 2+ a, a > 0},B = {x : − 5 <x< − 3,             3 < x<   √ 5} .
               Since  A ⊆ B, we have
                                                                 √
                                                    2 − a> − 5
                                                                 √
                                                    2+ a< − 3
               or
                                                                √
                                                     2 − a>       3
                                                                √
                                                     2+ a<        5
               ⇔

                                                                √
                                                    a< 2+         5
                                                                 √
                                                    a< −2 −        3
               or

                                                                √
                                                     a< 2 −       3
                                                            √
                                                     a<       5 − 2
                                       √
               which implies  0 <a <     5 − 2 since  a> 0.

                                          √
               3.34 Solve the inequality    x − 3x +2 >x − 3.
                                             2

               Solution: The inequality is equivalent to

                                                         x − 3 < 0
                                                    2
                                                   x − 3x +2 ≥ 0
               or


                                                      x − 3 ≥ 0
                                                 2
                                                x − 3x +2 > (x − 3)      2
               ⇒


                                                        x< 3
                                                    x ≤ 1 or x ≥ 2
               or


                                                       x ≥ 3
                                                       x> 7/3
               ⇒ x ≤ 1 or  2 ≤ x< 3 or  x ≥ 3.








                                            Download free eBooks at bookboon.com
                                                            98
   93   94   95   96   97   98   99   100   101   102   103