Page 100 - Elementary Algebra Exercise Book I
P. 100

ELEMENTARY ALGEBRA EXERCISE BOOK I                                             inequAlities



                                                                                    1
                                                                      1
                                                                          1
               3.39    If  a, b, c  are distinct positive numbers, show  + +  1 c  > √ + √ 1 ca  + √ 1 ab  .
                                                                      a
                                                                          b
                                                                                    bc
                                                             √         √                  √         √
                                                                                               √
                                                                                        √
                                                                                                  √
                                                          √   √   √ √         2(bc+ca+ab)−2(a bc+b ca+c ab)
                                                                                             √
                                                   bc+ca+ab−(a bc+b ca+c ab)
                        1
                                        1
                           1
                                   1
                              1
                                             1 bc+ca+ab−(a bc+b ca+c ab)
                      1
                                   1
                   1
               Proof 1:  + + −( √ + √ + √ )=                            =  2(bc+ca+ab)−2(a bc+b ca+c ab)  = =
                                         1
                              1
                         1
                                                                           =
                    +
                        a + −( √ + √ + √ )=
                                                                                         2abc
                   a  √ b  c √  b  c bc √  bc ca  ca ab  ab  abc  abc                  2abc
                                              √
                                          √
                                    √
                           √
                √   √ ( ab− bc) +( bc− ca) +( ca− ab) 2
                                          √
                                       2
                                     √
                             2 √
                        2
                                   2
               ( ab− bc) +( bc− ca) +( ca− ab) 2   > 0
                                   abc         > 0.
                              abc
                                                                        √
                                                                     √  a √ bc+b ca+c √
                                                                               √
                                                                             √
                                                                   √
                                                                          √ √
                        1 1
                                        1
                                                                    a bc+b ca+c ab ab
                                                     1
                             1 1
                                              1
                                 1
                                                            bc+ca+ab
                                                                                   ⇔ bc + ca + ab > >
                   1
                        1 +
                                                                                      ⇔ bc + ca + ab
                                                        bc+ca+ab
                                                                  a bc+b ca+c ab
                   1
                                                    ⇔ ⇔
                                      + √ 1 + √
                               > √ 1 > √
               Proof 2:   + +  1 +  1  + √  1  + √ ca  1  ⇔ ab bc+ca+ab  > > >   ⇔ bc + ca + ab >
                                             + √ 1 + √
                     + +
                              > √ c
                             b
                        a
                   a a √  b b  c c √  bc √  bc ca ca  ab ab  abc abc abc  abc abc
                                 √ bc
                         √
                 √ √    √       √                            √ √ √  √ √ abc √  √  √ √  √  √ √ √  √ √  2

                                                                                                 2
                                                                                                 bc) +
                     a bc + b ca + c ab ⇔ 2(bc + ca + ab) > 2(a bc + b ca + c ab) ⇔ ( ab −
               a bc + b ca + c ab ⇔ 2(bc + ca + ab) > 2(a bc + b ca + c ab) ⇔ ( ab − bc) +          2 bc) +
                                             √
                      √
               a bc + b ca + c ab ⇔ 2(bc + ca + ab) > 2(a bc + b ca + c ab) ⇔ ( ab −
                                        √
                √ √    √ √  √    √ 2 √  √ √       2
                         ca) +( ca − ab) ≥ 0 which is obviously valid.
                                          ab) ≥ 0
               ( bc  ( bc −  2 2 ca) +( ca − 2 2 ab) ≥ 0
               ( bc − −
                         ca) +( ca −
                                                                     √      √           √      √           √       √
                                                                                                                        2
                                                                                 2
                                                                                                    2
               Proof 3: Since a, b, c  are distinct positive numbers, then  ( ab −  bc) > 0, ( bc −  ca) > 0, ( ca −  ab) > 0

 √  √  √  √     √       √                                                   √ √     √ √    √ √                         √ √     √ √    √ √
 2       2                   2
 ( ab −  bc) > 0, ( bc −  ca) > 0, ( ca −  ab) > 0. Add them up to obtain  2(ab+bc+ca)−2(a bc+b ca+c ab) > 0 ⇒ ab+bc+ca > a bc+b ca+c ab ⇒
                                                                                                            ab+bc+ca > a bc+b ca+c ab ⇒
                                                         2(ab+bc+ca)−2(a bc+b ca+c ab) > 0 ⇒
 √  √  √                      √       √      √        1  1 1  1 1  1  1  1  1  1  1  1
 2(ab+bc+ca)−2(a bc+b ca+c ab) > 0 ⇒ ab+bc+ca > a bc+b ca+c ab ⇒  + +  c  > √ + √ ca  + √ ab .
                                                         + + > √ + √
                                                                             + √
                                                                      bc
                                                            b c
                                                      a
                                                                          ca
                                                        a b
                                                                    bc
                                                                                 ab
 1
 1  + +  1  > √ + √ 1  + √ 1
 1
 a  b  c  bc  ca  ab
               3.40    Real numbers  x,y,z  satisfy the inequalities  |x| ≥|y + z|, |y|≥ |z + x|, |z| ≥|x + y| .
               Show x + y + z =0.
                                            Download free eBooks at bookboon.com  Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                           100
                                                           100
   95   96   97   98   99   100   101   102   103   104   105