Page 100 - Elementary Algebra Exercise Book I
P. 100
ELEMENTARY ALGEBRA EXERCISE BOOK I inequAlities
1
1
1
3.39 If a, b, c are distinct positive numbers, show + + 1 c > √ + √ 1 ca + √ 1 ab .
a
b
bc
√ √ √ √
√
√
√
√ √ √ √ 2(bc+ca+ab)−2(a bc+b ca+c ab)
√
bc+ca+ab−(a bc+b ca+c ab)
1
1
1
1
1
1 bc+ca+ab−(a bc+b ca+c ab)
1
1
1
Proof 1: + + −( √ + √ + √ )= = 2(bc+ca+ab)−2(a bc+b ca+c ab) = =
1
1
1
=
+
a + −( √ + √ + √ )=
2abc
a √ b c √ b c bc √ bc ca ca ab ab abc abc 2abc
√
√
√
√
√ √ ( ab− bc) +( bc− ca) +( ca− ab) 2
√
2
√
2 √
2
2
( ab− bc) +( bc− ca) +( ca− ab) 2 > 0
abc > 0.
abc
√
√ a √ bc+b ca+c √
√
√
√
√ √
1 1
1
a bc+b ca+c ab ab
1
1 1
1
1
bc+ca+ab
⇔ bc + ca + ab > >
1
1 +
⇔ bc + ca + ab
bc+ca+ab
a bc+b ca+c ab
1
⇔ ⇔
+ √ 1 + √
> √ 1 > √
Proof 2: + + 1 + 1 + √ 1 + √ ca 1 ⇔ ab bc+ca+ab > > > ⇔ bc + ca + ab >
+ √ 1 + √
+ +
> √ c
b
a
a a √ b b c c √ bc √ bc ca ca ab ab abc abc abc abc abc
√ bc
√
√ √ √ √ √ √ √ √ √ abc √ √ √ √ √ √ √ √ √ √ 2
2
bc) +
a bc + b ca + c ab ⇔ 2(bc + ca + ab) > 2(a bc + b ca + c ab) ⇔ ( ab −
a bc + b ca + c ab ⇔ 2(bc + ca + ab) > 2(a bc + b ca + c ab) ⇔ ( ab − bc) + 2 bc) +
√
√
a bc + b ca + c ab ⇔ 2(bc + ca + ab) > 2(a bc + b ca + c ab) ⇔ ( ab −
√
√ √ √ √ √ √ 2 √ √ √ 2
ca) +( ca − ab) ≥ 0 which is obviously valid.
ab) ≥ 0
( bc ( bc − 2 2 ca) +( ca − 2 2 ab) ≥ 0
( bc − −
ca) +( ca −
√ √ √ √ √ √
2
2
2
Proof 3: Since a, b, c are distinct positive numbers, then ( ab − bc) > 0, ( bc − ca) > 0, ( ca − ab) > 0
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √
2 2 2
( ab − bc) > 0, ( bc − ca) > 0, ( ca − ab) > 0. Add them up to obtain 2(ab+bc+ca)−2(a bc+b ca+c ab) > 0 ⇒ ab+bc+ca > a bc+b ca+c ab ⇒
ab+bc+ca > a bc+b ca+c ab ⇒
2(ab+bc+ca)−2(a bc+b ca+c ab) > 0 ⇒
√ √ √ √ √ √ 1 1 1 1 1 1 1 1 1 1 1 1
2(ab+bc+ca)−2(a bc+b ca+c ab) > 0 ⇒ ab+bc+ca > a bc+b ca+c ab ⇒ + + c > √ + √ ca + √ ab .
+ + > √ + √
+ √
bc
b c
a
ca
a b
bc
ab
1
1 + + 1 > √ + √ 1 + √ 1
1
a b c bc ca ab
3.40 Real numbers x,y,z satisfy the inequalities |x| ≥|y + z|, |y|≥ |z + x|, |z| ≥|x + y| .
Show x + y + z =0.
Download free eBooks at bookboon.com Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
100
100

