Page 96 - Elementary Algebra Exercise Book I
P. 96

ELEMENTARY ALGEBRA EXERCISE BOOK I                                             inequAlities


                                                        √
                                                       4
               3.24    Solve the inequality  x log x  >  x · x  (a> 0,a  =1).
                                                a
                                                       a 2
               Solution: When  a> 1, take the log with base  a  on both sides to obtain
                (log x) > log x−2 ⇒ 2(log x) −9 log x+4 > 0 ⇒ (2 log x−1)(log x−4) >
                                                   2
                       2
                            9
                                                      2
                               9
                           2
                   (log x)  2 > log x−2 ⇒ 2(log x) −9 log x+4 > 0 ⇒ (2 log x−1)(log x−4) >
                                               a
                                                                               a
                                                           a
                                a
                    a
                                                                                          a
                       a
                                                                                  a
                                                   a
                                   a
                                                                                             a
                                                              a
            0 ⇒ log x<    1  1  2                         √            4
               0 ⇒ log a  2 x<  2    or  log x> 4 ⇒ 0 < x<  a  or  x> a . When  0 <a < 1,
                    a
                                      a
                       2    9                                                1                   4
                                                                                1
                               9
                (log x) < 2  2 < log x − 2 ⇒ (2 log x − 1)(log x − 4) < 0 ⇒  2 ⇒ < log x< 4 ⇒ a < 4    <
                                                                                  < log x< 4 ⇒ a
                    a
                                 log x − 2 ⇒ (2 log x − 1)(log x − 4) < 0
                                a
                                                 a
                                                                                    a
                 √(log x)
                                                            a
            x<     a √  a      2    a               a           a               2      a
               x<     a .
                                                                               1
               3.25     Given  a> 0,b > 0,c > 0,a + b + c =1, show  (1 + )(1 + )(1 + ) ≥ 64.
                                                                                             1
                                                                                      1
                                                                               a      b      c

                                                                                                   √             √         √
               Proof: Since  a, b, c > 0,a + b + c =1 , then   1+  1 a  = 1+  a+b+c  = 2+  b+c  ≥ 2+  2 bc  ≥ 2 2 ·  2 bc  =4  a bc

                                                                                                    a
                                                                             a
                                                                                                                  a
                                                                                         a

            √             √        √                                 1       √ ca    1      √ ab
 1+  1  = 1+  a+b+c  = 2+  b+c  ≥ 2+  2 bc  ≥ 2 2 ·  2 bc  =4  bc . Similarly we can obtain  1+  ≥ 4  , 1+  ≥ 4  . Multiply
 a  a  a     a            a         a                                b        b      c       c
                                                                            √       √       √
                                                                   1
                                                      1
                                                             1
               these three inequalities to obtain  (1 + )(1 + )(1 + ) ≥ 4    bc  · 4  ca  · 4  ab  = 64.
                                                      a      b     c        a       b        c
                                           1
                                    1
                               1
               3.26    Show  +     n+1  +  n+2  + ··· +  n 1 2 > 1 for  n ∈ N ,n ≥ 2.
                              n
                                  1
                            1
                      1
               Proof:  +   n+1  +  n+2  + ··· +  n 1 2 >  n n 2 +  n 1 2 +  n 1 2 + ··· +  n 1 2 =  n+n(n−1)  =1 .
                                                                                  2
                      n
                                                                                 n
                                                                                    √
                                                                            √
               3.27    Given  x ≥ 0,y ≥ 0, show  (x + y) + (x + y) ≥ x y + y x .
                                                                1
                                                            2
                                                   1
                                                   2            4
                                   1
                                                                                          1
                      1
                                                                                                     1
                                                1
                                                                     1
                                                                  1
                               2 1
                   1
                                                                                       1
                                                                                                  1
                                              1
                            2
               Proof:  (x + y) + (x + y)=(x + y)[(x + y) + ]=           1  1 (x + y)[(x + ) +(y + )] ≥
                     (x + y) + (x + y)=
                                                 (x + y)[(x + y) + ]=(x + y)[(x + ) +(y + )] ≥
                   2  2          4  4         2                   2  2  2  2           4  4       4  4
                                                2
                √  √      1  1      1  1  √  √     1  1     1  1   √  √ √  √  √  √     √  √   √  √
                                                                       xy( x +y) = x y + y x .
                                                       x +2 y]=
                    xy[(x + ) +(y + )] ≥xy[2
                  xy[(x + ) +(y + )] ≥         xy[2 x +2        y]=xy( x +         y) = x y + y x
                          4  4      4  4           4  4     4  4
                                    2
                              1    x −x+1
               3.28    Show  ≤     x +x+1  ≤ 3.
                                    2
                              3
                               2
                                                                                      2
                                             2
                                                            2
               Proof: Let y =  x −x+1 , then  yx + yx + y − x + x − 1 =0 ⇔ (y − 1)x +(y + 1)x + y − 1 =0

                               2
                              x +x+1
 2  2  2                                                  2         2       2                    2
 yx + yx + y − x + x − 1 =0 ⇔ (y − 1)x +(y + 1)x + y − 1 =0. Consider the discriminant  Δ=(y+1) −4(y−1) = −3y +10y−3 ≥ 0 ⇒ 3y −10y+3 ≤ 0 ⇒ (3y−1)(y−3) ≤
                                                                                               2
                                                        2
                                                                          2
                                                                  2
                                            Δ=(y+1) −4(y−1) = −3y +10y−3 ≥ 0 ⇒ 3y −10y+3                    ≤ 0 ⇒ (3y−1)(y−3) ≤
                                                  ≤ y ≤ 3
 2  2  2  2                                0 ⇒ 1  1 3 ≤ y ≤ 3.

 Δ=(y+1) −4(y−1) = −3y +10y−3 ≥ 0 ⇒ 3y −10y+3 ≤ 0 ⇒ (3y−1)(y−3) ≤ 0 ⇒  3
 1
 0 ⇒  ≤ y ≤ 3
 3                                                                             a    b
               3.29     a, b, x, y  are positive numbers and satisfy  a + b = 10, +  y  =1, and  x + y  has
                                                                               x
               the minimum value 18, find the values of  a, b .
                                                                                                                                  √
                                                               b
                                                           a
               Solution: The conditions imply that x+y =( + )(x+y)= a+b+          ay  +  bx  = 10+  ay  +  bx  ≥ 10+2  ay  ·  bx  = 10+2 ab

                                       √                   x   y                   x   y     √   x    y   √         x   y
 b
 a
 x+y =( + )(x+y)= a+b+  ay  +  bx  = 10+  ay  +  bx  ≥ 10+2  ay  ·  bx  = 10+2 ab. Since x + y has the minimum value 18, then  10 + 2 ab = 18 ⇒  ab =4 ⇒ ab = 16
 x  y  x  y  x  y       x   y
  √            √
 10 + 2 ab = 18 ⇒  ab =4 ⇒ ab = 16. Solve
                                                      a + b = 10
                                                         ab = 16
               to obtain  a =2,b =8 or  a =8,b =2.
                                            Download free eBooks at bookboon.com
                                                            96
   91   92   93   94   95   96   97   98   99   100   101