Page 99 - Elementary Algebra Exercise Book I
P. 99

ELEMENTARY ALGEBRA EXERCISE BOOK I                                             inequAlities



               3.35    Given |a| < 1, |b| < 1, |c| < 1 , show (1) |1 − abc| > |ab − c|; (2) a + b + c<abc +2 .

                                                                         2
                                                           2 2
               Proof: (1) The given conditions imply 1 − a b > 0, 1 − c > 0. Multiply them together to
               obtain  1+ a b c >a b + c ⇒ 1 − 2abc + a b c >a b − 2abc + c ⇒ (1 − abc) >
                                          2
                                            2
                           2 2 2
                         2 2 2
                                     2 2
                                  2 2
                                                            2 2 2
                                                                                       2
                                                                                                   2
                                                                                                      2
                                                                                     2
                                                               2 2 2
                                                                      2 2
                                                                         2 2
                   1+ a b c >a b + c ⇒ 1 − 2abc + a b c >a b − 2abc + c ⇒ (1 − abc) >
               (ab − c) ⇒|1 − abc| > |ab − c|.
                          2
                       2
                  (ab − c) ⇒|1 − abc| > |ab − c|
               (2)  (a − 1)(b − 1) > 0 ⇒ a + b < ab +1 (i).  (ab − 1)(c − 1) > 0 ⇒ ab + c < abc +1 (ii).
               (i)+(ii)⇒ a + b + c < abc +2.
                                                                                        2
               3.36 The smaller root of the quadratic equation  x − 5x log k + 6 log k =0 is in the
                                                                     2
                                                                                        8
                                                                              8
               interval  (1, 2). Find the range of the parameter  k.
               Solution: The parabola opens upward, and the smaller root is within  (1, 2), then
                                                       f(1) > 0
                                                       f(2) < 0
                   log k> 1/2 or       log k< 1/3
               ⇒      8                   8          ⇒ 2/3 < log k< 1 ⇒ 4 <k < 8.
                           2/3 < log k< 1                         8
                                     8
               3.37    The inequality  ax + bx + c> 0  has the solution set  {x|α <x < β}  where
                                            2
               0 <α <β . Find the solution set of the inequality  cx + bx + a< 0.
                                                                     2
                                                             ⎧
                                                             ⎨ α + β = −b/a > 0
               Solution: The given condition implies that         αβ = c/a > 0      and let the quadratic
                                                                       a< 0
                                                             ⎩
               equation



                                                                                          1
                                                                          b
               cx + bx + a =0 has two roots  x 1 ,x 2. Then  x 1 + x 2 = − =  α+β  =  1  + ;
                  2
                                                                               αβ
                                                                                     α
                                                                                          β
                                                                          c
                                     1
                                                           1
                                                                                         2
               x 1 x 2 =  a  =  1  =  1  · .  0 <α <β ⇒  1  < , in addition  c< 0, then  cx + bx + a< 0
                       c    αβ    α  β                β    α
                                                      1
               has the solution set  {x|x<  β 1  or x> }.
                                                      α
               3.38    Real numbers  a, b, x, y  satisfy  a + b =1,x + y =1, show  |ax + by|≤ 1.
                                                                          2
                                                                     2
                                                        2
                                                             2
               Proof 1:  (|a|−|x|) ≥ 0 ⇒ a + x ≥ 2|ax|. Similarly we have  b + y ≥ 2|by| .
                                                                                2
                                  2
                                                                                     2
                                             2
                                                  2
               Therefore,  a + b + x + y ≥ 2(|ax| + |by|). Since  a + b =1,x + y =1,
                                     2
                                                                                       2
                           2
                                2
                                                                     2
                                                                          2
                                           2
                                                                                  2
               then  2 ≥ 2(|ax| + |by|) ≥ 2|ax + by| , thus  |ax + by|≤ 1.
               Proof 2: Since  a + b =1,x + y =1, let  a = sin θ, b = cos θ, x = sin ϕ, y = cos ϕ , then
                                2
                                            2
                                                 2
                                     2
               ax + by = sin θ sin ϕ + cos θ cos ϕ = cos(θ − ϕ). Thus  |ax + by| = | cos(θ − ϕ)|≤ 1.
                                            Download free eBooks at bookboon.com
                                                            99
   94   95   96   97   98   99   100   101   102   103   104